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HWACE

A preface is written last, placed first, and most likely, not read
at all. Nevertheless, authors have a certain fondness for prefaces.
Here they are permitted to say why and how the book came to be written,
as well as to point out, as best they can, the advantage which they
hopefully expect it may bring to the reader.

Flight control is a systemrs discipline which brings together the
component dynamic characteristics of aircraft and flight controllers
to fprm the system dynamic characteristics of the vehicle ,.nder the
action of feedback control. Unfortunately, it has seemed to us that,
by and large, the texts, monographs, and courses of instruction which
treat these topics have tended to emphasize their disparities. There
is certainly no lack of books on aircraft stability and control nor
on feedback control systems. Our conviction, however, is that there
is a field which comprises both of these subjects, and, indeed, that
an understanding of either one can help to illuminate the other.

The purpose of this book is to present an integrated, analytical
treatment of the dynamics of the 'iehicle (the controlled elemet.4 and
of its flight control systems. The book has been written by and for
engineers concerned wi',h the analysis of aircraft dynamics and with
the synthesis of aircraft flight controls.' Such studies are at least
as old as powered flight itself and they seem likely to remain pertinent
as long as there are new and more advanced aeronautical vehicles.

I\

Not long ago the intellectual mathematical equipment of skilled
stability and flight control analysts generally exceeded their physical
ability to perform all the design and tradeoff calculations which might
be needed or desired. Nowadays quite the opposite situation exists
because advances in both analog and digital computation allow the
consideration of problems which at one time would have been rejected
as being too time consuming. As a consequence, the analyst's physical
means now often exceed his mental grasp, and what he can compute may,
possibly, far exceed his understanding or appreciation. This can lead
to an excessively empirical approach to design which is similar to the
one used by "practical" designers thirty or more years ago. Then air-
plane stability and control properties were evaluated only in flight
test, and flight control equipment was also "designed" with the aid of
extensive full scale testing. A difference, of course, lies in the
abstractions involved, for regardless of the detail and complexity of
our mathematical models they remain just that, whereas the physical
equipment and the aircraft are the objects of our abstractions. Viewed
in these terms, too great a reliance on a numerical-emplrical approach
to design is no better and may be even worse than the physical empiri-
cism of earlier days. Inundated by computer printouts and strip charz
recordings, the analyst is confronted with a crucial problem-what is
the essence, what does it all mean?
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For this reason we have strongly emphasized an analytical approach
to flight control system design and have sumarized an eclectic collec-
tion of efficient, neatly interconnected techniques which inherently
and readily display the essential aspect of complex system problems.
When skillfully applied, either with pencil and paper or using computer
aids, these techniques enable one to attain a high level of insight and
physical understanding with a minimulm of effort. They are suitable
for the establishment of nominal system designs, for the forecast of
off-nominal problems, and for the diagnosis of the root causes of the
pathological syndromes which almost inevitably occur in the course of
the, design process.

While we have tried to be as definitive a, possible on the subject
of aircraft and flight control system dynamics and the procedures which
are employed to accomplish automatic flight control. system designs, the
scope of our work has had to be l.qited to keep within the Procrustean
confines of one volume (albeit a large volume). The necessary limita-
tion has been accomplished primarily by considering the aircraft only as a
rigid body, and by, almost exclusively, emphasizing the theory of linear
constant coefficient systems. The decisions on both these limitations
were mi-tade somewhat reluctantly, since the flexible airframe and nonlinear
features o. f light control are always fascinating academically and are
often importiani practically. We should hasten to remark, howe&er, that
regardlen:. of the number of modes or nonlinearity of a problem, linearized
solutioi., to comparatively lowr order problems almost always give reasonable
approxi-. t' , :wrers. They provide, as it were, a most useful species of

SlkbitJig case solution, and limiting cases are, in general, the basis for
much of our physical understanding of complex phenomena. With a solid
grounding in linear theory, the extension of the results to nonlinear
problems, especially of ,tability, is ordinarily rewarding and effective.
Thus, linear theory is, v., generally, a theory of a first approximation
which has the great virtue that it can be conceptually assimilated in its
entirety. Further, as a practical matter, it is our observation that
the great majority of the physical problmns of aircraft flight control
which are susceptible to mathematical treatment are, in fact, handled
to a very good first approximation by linear treatments.

This book has a geneology. Its mmediate predecessors are the series
of BuAer volumes prepared in the early 1950's at Northrop Aircraft, Inc.
The considerable success and the reputation of these volumes in industrial
design departments, government laboratories, and in engineering schools
prompted the original intent of the Naval Air Systems Command in spon-
soring a large portion of the present work (Contract NOw 62-0781-c), so
as to provide revisions and an updating for two of those volumes:

"Dynamics of the Airfrme," BuAer Report AE-61-)II,
September 1952

"Automatic Flight Centrol Systems for Piloted Aircraft,"
BuAer Report AE-61-11VI, April 1956
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Although some of the numerical data and examples from these earlier
volumes have been used here, we present an essentially new effort
rather than a revision. Furthermore, in order to provide an integrated
treatment, we have included miaterial which partially revises the first
of the BuAer volumes:

"lMethods of Analysis and Synthesis of Piloted Aircraft
Flight Control Systems," BuAer Report AE-6i-4I, March
1952

Consequently, this book will, in the. main, supersede the above three
volumes of the BuAer series.

We are indebted to many people and organizations for their assistance
in the preparation of this book. First and foremost is the Naval Air
Systems Command, which sponsored the preparation of much of the manu-
script. The NIASC project monitor, Mr. Jack Crowder, was an ideal
supporter, continually interested and anxious to get the job done,
yet patient and understanding in spite of the inevitable delays that
projects of this sort seem to incur. We also owe major debts to our
colleagues, at Systems Technology, Inc., and elsewhere, who have
critically reviewed various versions and portions of the manuscript
and have offered constructive criticisms and suggestions for its
improvement. First in this group is Mr. Robert L. Stapleford of STI,
who has been through the book several times exercising his penchant
for clarity and his keen eye for error. He may have missed some things,
but the very many mistakes which he caught and corrected make his role
in the book important indeed- to the authors and readers alike.
Mr. Robert J. Woodcock of the Air Force Flight Dynamics Laboratory,
who thoroughly reviewed several chapters, was also a great help in
getting and keeping things straight. Mr. H. R. Hopkins of the Royal
Aircraft Establishment, Farnborough, U. K., reviewed Chapter 1, making
many helpful suggestions, and very graciously offered us the use of his
own extensive material on the history of flight control. Dr. Malcolm J.
Abzug of TRW also made a number of correcting and clarifying remarks
related to the history presented in Chapter 1 for which we are very
grateful, and Mr. Ronald 0. Anderson of the Air Force Flight Dynamics
Laboratory made available to us his bibliography on the history of
feedback controls. Mr. Gary Teper of STI was responsible for the
collection and presentation of the data c6ntained in Appendix A.
Particular acknowledgment is further due to STI's publication staff,
who labored long and hard to prepare the manuscript for publication,
and especially to Mr. Junichi Taira, STI's Publications Manager, whose
meticulous attention to every detail is revealed on each page of the
book.

Besides those who helped directly there are others in the background.
Most important, of course, are our many colleagues in the flight control
and automatic control community whose original work is reflected here.
We have tried to acknowledge them throughout the book with pertinent
references to the published literature. As is evident from these
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footnotes, a great deal of the work summarized here was originally
accomplished for the Control Criteria Branch of the Air Force Flight

Dynamics Laboratory. In fact, same of the material appearing here

for the first time is based on unpublished notes prepared in the
course of USAF-sponsored work. We must also acknowledge our former
colleagucs at Northrop Aircraft, Inc., Messrs. Warren Koerner and
Robert E. Trudel, who were among the authors of the old BuAer "Dynamics
of thc Airframe" volume on which parts of Chapters 4, 5, and 6 is

based. Finally, we wish to acknowledge our present or past STI

co-workers, J. J. Best, T. S. Durand, D. E. Johnston, H. R. Jex,
W. A. Johnson, L. G. Hofiann, J. D. McDonnell, R. A. Peters, R. J.
Wasicko, D. H. Weir, and J. Wolkovitch, for their several original
contributions to portions of the material which are presented in the
following pages.

The merits which this book may possess can-, in large part, be
attributed to all these people. Its faults are not likely to be

charged to them. The authors cannot expect to have produced 9. work

wi.thout blemish, but they have the right to hope that it may prove

both instructive and useful to others, like themselves, who may wish

to help to solve the flight control system design problems of future

generations of aircraft.

Duane McRuer
Irving Ashkenas
Dunstan Graham

Hawthorne, California
August, 1968
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@CEAPTE I

IT RODUION AND AMEOENTS

"We now know a method of mounting into the air, and, I
think, are not likely to know more. The vehicles can
serve no use till we can guide them; and they can gratify
no curiosity till we mount with them to greater heights
than we can reach without; till we rise above the tops
of the highest mountains."*

The economic or military value of any vehicle depends fundamentally

on its ability to traverse a controllable path between its point of

departure and its destination or "target." Abstractly, the vehicle is

a velocity vector in space. It has a direction in which it is going and

a speed with which it is going there. The time integral of the velocity

vector Is the path. Each type of vehicle, however, is made to move and

carry in a certain medium and its motions may be subject to constraints.

Means for control of the path vary widely and depend on the constraints.

Thus a train, for examplc, is constrained to move along a track and the

control which is provided is merely a speed control. The train is not

steered. An automobile or a ship, on the other hand, while constrained

to move on the surface of the land or the sea, must be steered as well.

Aircraft share with submarines and torpedos an unusual freedom from

constraints, and the problems of the control of aircraft are of unusual

complexity. We do indeed "know a method of mounting into the air," but

the solution of the problems of control still requires both sensibility

and diligence.

An aeronautical vehicle or weapon system contains spatial sensors,

and guidance and control devices (possibly all subsumed in the humn

pilot) whose purpose it is to develop three-dimensional flight path

*Samuel Johnson, "A Dissertation on the Art of Flying," Chapt. VI in

History of Rasselas, originally published in 1759, republished by
Clarendon Press, Oxford, 1931.
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commands appropriate to steering so as to reach a destination or target,

and then to execute those commands by maintaining or modifying the forces

on the vehicle so as to maintain or modify the velocity vector. This

allows an intended purpose or "mission" to be accomplished.

Qualities of an aircraft which tend to make it resist changes in the

direction or magnitude of its velocity vector are referred to as

stabilit , while the ease and expedition with which the vector my be

altered are referred to as the qualities of control. Stability makes a

steady unaccelerated flight path possible; maneuvers are made with con-

trol. The path of an aircraft, however, is never stable of itself, and

whether through the intervention of the human pilot or by means of auto-

matic control, stability is actually secured with the mechanism of feed-

back, a principle by which cause-and-effect systems are modified to

secure certain desirable properties. Information about the effect (or

output) is fed back (or returned) to the input and is used to modify

the cause. Typical uf feedback control is its speed of response and its

accuracy in following comands and in suppressing the effects of disturb-

ances., Also typical, however, is its tendency to "hunt" or oscillate.

The particular advantages of feedback are enhanced by high gain, but this

is inimical to dynamic stability, and high gain also increases the

susceptibility of the system to spurious signals or "noise." Therefore

a designer intending to exploit the potential advantages of feedback is

compelled to strike a fine balance between the desirable properties which

might be secured and the pressing danger of disastrous performance.

The earliest aeronautical experimenters had hoped to achieve

"inherent" stability (i.e., without feedback), and while many, such as

Cayley, Penaud, Lilienthal, Chanute, and Langley, pursued this goal and

discovered how to set the incidence of the tailplane so as to achieve

longitudinal stability with respect to the relative wind, and to use

wing dihedral so as to achieve "lateral stability," it gradually became

clear that configurations with a large amount of such inherznt stability

were particularly, and distrcssingly, susceptible to boing upset by gusts.

Speaking before the Western Society of Engineers in 1901, Wilbur

Wright said: "Men already know how to construct wings or aeroplanes,

1-2



which when driven through the air at sufficient speed, will not only

sustain the weight of the wings themselves, but also at of the engine,

and of the engineer as well. Men also know hoi" o build Lnes and

screws of sufficient-lightness and power to drive these planes at

sustaining speed.... Inability to balance and steer still c6nfronts

students of the flying problem.... When this one feature has been

worked out, the age of flying machines will have-arrived, for all other

difficulties are of minor importance."*

While this statement was somewhat optimistic with respect to the

state of knowledge concerning airfoils and propellers, as the Wright

Brothers themselves soon discovered, it was correct in its essentials,

and there is no doubt at all that suitable stability and control char-

acteristics were the very last features of the first successful airplane

to be developed. It is now generally agreed that the principa contri-

bution of Wilbur and Orville Wright was their recognition that the frus-

trating search for inherent stability might well be abandoned if only

the operator were provided with sufficiently powerful controls with

which to balance and steer, i.e., that the human pilot, operating on

feedback signals, could use the controls to stabilize a neutrally stable

or an inherently unstable aircraft t Of course the Wright Brothers did

not use this language, and indeed the recubai'ion of the essential char-

acter of the airplane as an element in a feedback control loop came

comparatively recently.

While the first automatic feedback control system for an airplane

actually antedated the first successful flight by more than a decade,

and the demonstration of completely automatic control of an airplane in

full flight took place more than 50 years ago in 1 914, the means employed

to secure satisfactory flying qualities of the aircraft themselves, and

to develop artificial stabilizers and automatic pilots were, at first,

*M. W. Mc~arland, ed., The Papers of Wilbur and Orville Wright,

Vol. I, McGraw-Hill Book Co., New York, 1953, pp. 99-100.
tC. S. Draper, "Flight Control," J. Roy. Acron. Soc., Vol. 59,

July 1955, pp. 451 -477.
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largely empirical arts. They seem to have made progress with a minimum

tamount of mathematics until after the end of the 1939-4,9 war.

The modern view of the dynamics of aircraft and their control systems

in terms of the stability and response of the entire closed-loop (feed-

back) system can be traced from its sources, by way of three separate

branches of technical knowledge, to their confluence, and the recent

advance and augmentation of the subject (see Fig. I-I). During roughly

the first 50 years of aviation's history, the study of the dynamics of

aircraft and their control systems was of negligible interest to designers,

who learned to get by with rules of thumb for proportioning the stabi-

lizing and control surfaces and to develop automatic feedback controls

by cut-and-try methods. This was in spite of the fact that a mthemati-

cal theory for the stability of the unattended motion and of the air-

craft's response to control was developed at an early date. On the other

hand, design trends since World War II, which have greatly extended the

flight envelope of fixed-wing airplanes and introduced new types of

vehicles, such as helicopters, VTOL airplanes, ground effect machines,

hydrofoil boats, w.inged missiles, and space launchers, have so enormously

multiplied the ntunber and type of problems that the techniques formerly

employed in practice would have been totally inadequate. Very fortul-

ately wartime pressures produced two developments which fundamentally

altered techniques for the design of automatic flight control systems.

The first of these was the theory of servomechanisms, and the second was

the electronic computer. Analysis and simulation are today the twin

pillars on which the entablature of aircraft flight conLrol system design

stands.

There has been un explosive growth in the practice of "experimenting"

with withentical models. It has been urged by both the expanding com-

plexity of the problems and the increacing availnbility of appropriate

methods and techniques. Arther, the mnn-hentical theory has served for

the c3assification, interpretation, and extrapolation of the growing

number of results of physical experiments.

It is to the development., exposition, and demonstration of methods

of analysis and synthesis for aircraft autoi:atic flight control systems

1-4
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Theory of Automatic Theory of
Aircraft Dynamics Feedback Control Feedback Control

of Aircraft

1890 Maxims gyroscopic stabilizer.

Obry's torpedo course control.
1900 Lanchester's study of phugoids

I

Bryan and Williams small perturbation theory.
1910 I Dr. Elmer Sperry and Lawrence Sperry invent

Be s J on asure derivatives and demonstrate 2-axis aircraft stabilizer andand olculaote mo erons, the aerial torpedo.

Hcmsoker introduces methods
in the United Stotes.

1920 GlauertBryont and Irving ,Cowley
and others measure or calculate derivatives. Gates and Garner study aircraft

Full scale flight tests confirm the theory. I
1930 M Development of the pneumatic-hydraulic A2 Nyquist studies stability of

B.M.'Jones surveys the status of the theory. Wiley Post flight feedbock amplifier.
Siemens automatic pilot.

U RAE Mark IV Bode introduces lour,:hmic
1940 Advances in calculations for a variety plots ,sensitivitv etc.

of aircraft and conditions. I 'ri I Harris applies t. :,,,ques to
servornechoni-.ms.ua German rudder controls and missile development. s ehNemr' tdyo os udrcnrl Halls thesis ,,

N'r td o s oAll-electric and maneuvering automatic pilots. esi ,
Flight of the'Robert E. Lee. The new texts

Frequency response methods introduced r ,
by GreenbergSeacord and others. Iv1 Evans locus' of roots method

1950

Baoyv' lecture

The BSAer- Northrop Volumes

Further impronements in understanding
of flight control

Fig. 1-1. Confluence and Augmentation of the Theory and Practice

of Automatic Feedback Control of Aircraft
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that this monograph is addressed. It is not a text on design, but is

rather a guide to the consideration of the effects of vehicle and equip-

ment features on the dynamic performance of the system. Where possible

the emphasis in treating the elements of the system is on the largest

entities. Thus, attention is directed to the response of the airplane

to elevator motion rather than to the change in airflow over the tail,

and to the input/output characteristics of a rate gyro rather than to

detailed consideration of the torques acting on the gimbal. The vehicles

considered are the ones which are heavier than the fluid in which they

operate, but which are acted on by significant fluid dynamical forces.

This class includes at least the following types of vehicles:

e Airplanes

* Helicopters

* Vertical takeoff and landing aircraft

* Ground effect machines

* Hydrofoil boats

Control, as somewhat distinct from guidance, is taken to be the subject
of interest. For this reason it will ordinarily be possible to consider

the motions in moving coordinate systems fixed in the vehicle, and to

avoid the coordinate axis transformations required to obtain the vehicle

motion in, for example, a coordinate system fixed in the earth. When

the origin of the moving coordinate system.i is in an "equilibrium" state

of motion along a nominal trajectory, the equations of motion of the

vehicle can be linearized for small perturbations, and the linearized

equations will have constant coefficients. Then it is possible to use

the convenient transfer function models for the dynamics of the 'vehicle,

and all the analytical techniques for the study of linear feedback

systems can be brought to bear on the problem.

Although there are a number of modern treatments of the stability

and control of aircraft,* all of which emphasize the same approach to

the linearized dynamics which is to be adopted here, and there is a very

wide selection of both introductory te-:ds and more advanced treatises on

*See footnote at the beginning of Chapter 4.
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automatic feedback control,* there has been a conspicuous lack of any

significant treatment of these subjects in concert and therefore no

proper introduction to the area between these fields. It is a fact

that the methods of servomechanism analysis can be used as a powerful"

tool in the study of aircraft dynamics, and, additionally, "that the

characteristi .s -of aircraft and their control systems provide a series

of both subtle and complex problems which are likely to carry the

student of feedback systems beyond what he may have learned in. connec-

tion with the customary examples of remote position control, speed

regulation, process control, and instrumentation. The discussion which

follows will serve to bridge a gap between existing technical disciplines

and to make more readily available some .of the results contained in a.

scattered engineering report literature which is now familiar only to a

small group of specialists.

The authors have adopted an eclectic view, taking from several fields

what best appeals and suits, but attempting, at the same time, to provide

a unified treatment. Where a completely unified view is not feasible the

dominant theme is stated and the minor theme is contraposed.

It is the conviction of the authors that only the most thorough

understanding of the dynamics of each element is a suitable basis for

system synthesis. While digital and analog computers are now generally

available to produce "solutions," even a sheaf of sol.utions may not

clearly show the designer how to obtain the most satisfactory behavior

and to avoid unpleasant surprises when the machinery is built. It is

for this reason that the mathematical analysis of aircraft feedback con-

trol systems is emphasized throughout the treatment here. Of course

simulation and flight testing are valuable tools in the development of

aircraft control systems, but, to an extent, a good theory is a summary

of and substitute for experience, and the understanding which is con-

ferred by analysis is a short-cut to the best results. It may seem,

however, that a linearized theory is unrealistic because practical air-

craft feedback control systems inevitably include nonlinear elements.

*See footnote at the beginning of Chapter 3.
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The results which are achieved justify its use. Restrictions which are
implicit in the use of linear theory are nowhere near as severe as might

be imgined. In part this is because linear approximations often have a

substantial validity, and in part it is so becatrze feedback, in itself,

tends to "linearize" the system.

Finally, it nay or nay not be true, as George 'Santayan= Said, that

"those who cannot remember the past are condemned to repeat it," but

there is enough truth there so that the history of the present subject

can be studied w.th considerable profit. It is evident upon knowledgeable

consideration that some costly mistakes might have been avoided with a

better appreciation for the difficulties which confronted previous'

investigators of the probiems of flight control.

1.1 OUTLZNE OF T E VOLUME: A GUIDE FOR TIM READER

The subject of the feedback control of flight has a considerable

scope and variety, and there is no canonical approach to it, understand-

ing. Its students will typically have acquired, a considerable knowledge

of the theory of linear feedback systems, and of the dynamic stability

of aircraft and their response to control, as substantially independent

subjects. The background of the typical reader will probably include

some knowledge of operational or Laplace transform techniques for the

solution of ordinary linear differential equations with constant coeffi-

cients, conventional servoanmlysis techniques such as the root locus and

frequency response methods, response calculations with either determin-

istic or random inputs, and the describing function method for the

treatment of common control system nonlinearities. While many of these

natters are reviewed here before they are applied, the pace is brisk and

the treatment is not intended as an introduction to the elements of the

theory. The reader is further presumod to have some acquaintance with

the dynamics of rigid bodies, although it is not, strictly speaking,

necessary to have studied the dynamics of aircraft. Again the latter

subject is treated here ab initio, but with a purpose not shared with

the conventional texts cited on p. 4-2.

Fig. 1-2 is a graphical representation of the outline for this

volume.
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1. Introduction and Antecedents
Including Outline of the Volume
and History of the Subject

2. Mathematical Models

3. Feedback System Analysis 4. Vehicle Equations of Motion

5. Longitudinal Dynamics 6. Lateral Dynamics

7. Elementary Longitudinal 8. Elementary Lateral
Feedback Control Feedback Control

I.
9. Requirements, Specifications,and Testing

Ix
10. Influence of Commands

and Disturbances

I I.Longitudinal and Lateral
Automatic Flight Control Systems

Fig. 1-2. Graphical Outline of the Volume
1: Showing interrelationship Between Topics
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The .book .begins, in this first chapter, with a definition of

cpntrol appropriate to aeronautical vehicles and a distinction between

control and guidance. This 'is followed by a brief summary of the

advantages of feedback for control and an. introduction to some of the

earliest examples of ' f,id '.ck control. Historical sketches of the

development of aircraft dynamic stability and control, practical auto-

matic flight control systems, and feedback system analysis complete the

introduction.

Chapter 2 comprises a review of those aspects of applied mathematics

pertinent to the construction and use of linear mathematical models of

aircraft and their -control systems. The laplace transform method and

the transfer function model, which play such a prominent part later, are

discussed in detail and considerable emphasis is placed on graphical

representations and graphical constructions. While the typical reader

is assumed to already have a considerable familiarity with this material

so that he should be able to move ahead rapidly, he is likely to find

that certain matters, such as time vectors and the steady-state response

to polynomial inputs, are treated here in a unique way which provides a

background for subsequent developments.

The material of Chapter 3 is a condensed account of the partjleular

topics in feedback system analysis on which the remainder of the mono-

graph strongly depends. Here the reader will find not only a review of

the root locus method and the conventional open-loop/closed-loop logarith-

mic "frequency response" methods, but also their presentation as elements

of a unified servoanalysis method which is a complete generalization of

the semigraphical analytical techniques. The reader will also find here

an exposition of multiloop analysis procedures particularly appropriate

to the study of vehicular control systems, and, finally, a discussion of

sensitivity including the connection between gain sensitivity and the

modal response coefficients (time vectors or eigenvectors) of the system

response. This chapter is one of the most unusual features of the

volume because many of the techniques, and especially their highly

organized connections, are not explained in-the conventional textbooks

on linear feedback system analysis.
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The main issue is joined in Chapter 4 where the equations of motion

of aeronautical vehicles are developed from first principles. It is

shown there that these equations can be linearized about a nominal flight

path, and that when this flight path lies in the plane of symmetry of

the unperturbed vehicle the equations can normally be separated into two

independent sets, the longitudinal equations and the lateral equations.

This simplification is the basis for the division of the greater part

of the balance of the discussion.

Still with the intention of studying the aircraft under active

control, the longitudinal dynamics of the aircraft-alone are explored

in Chapter 5. The transfer fuictions for the aircraft's -response to

control are evolved from the equations of motion, and approximate factors

for the numerators and denominators are presented in terms of coeffi-

cients in the equations. While approximate factors for parts of the

characteristic functions (denominators) of airplanes have been known

for some 40 years, it was only a few years ago that a similar under-

standing of the numerators was developed, and a similar approach to VTOL

aircraft has only been successful even more recently. Here again, the

'4 presentation in Chapter 5 departs considerably from the conventional

practice because little or no attention is paid to transfer function

factors in the existing texts, and the developments summarized there

represent a part of the novel approach which is a feature of this volume.

Chapter 6 does for the lateral motions what Chapter 5 does for the

longitudinal motions: The treatment is exactly parallel although the

results are different because of the distinction between the typical

motions in the several degrees of freedom.

In Chapters 7 and 8 the discussion finally turns to the feedback

control of airplanes and helicopters. The stability and response of

vehicles under continuously active control are considered with the

assumption of ideal proportional control, i.e., no account is yet

taken of the practical imperfections, such as lags, which inevitably

are associated with real sensors, amplifiers, and actuators. The

possible ideal feedback systems for control of the longitudinal motions

are canvassed in Chapter 7, while a similar presentation on ideal feed-

back systems for control of the lateral motions is made in Chapter 8.
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Chapter 9 is on the subject of general requiremncnts, specifications,

and testing. These subjects are presented in the context of .. design

process outline. F.hasis is pjaced on the sources of operational

requirements, and the logical evolution of the requirements from these

origins. The requirements which derive from a consideration of flight

control systems as feedback devices are also treated at length.

In Chapter 10 the effects of inputs and disturbances are treated

as a performance consideration. Up to that point) the inputs to the

system are consideved to be relatively simple test signals, such as

an impulse or a sine wave. Now the influence on design of considering

the structure of the inputs and disturbances is introduced for the

first time. Actually the inputs and disturbances are approximated

by either deterninistic signals more complicated than the ones pre-

viously considered, or, where their nature demands it, in probabilistic

terms. The first probability density function and the second proba-

bility distribution function are reviewed, and their use in system

performance calculations is explained in some detail for the cases

in which the signals have a Gaussian distributiol, and are stationary.

In that case convenient calculations of the performance of Jinear

systems can be carried out in the frequency domain by making use of

the power and cross-spectral density functions. The "transient analog"

and adjoint technique, shich unclerlie the computer approach to, more

complex problems, are also introduced.

Finally, much of the material of all the previous chapters is used

in discussions of longitudinal and lateral automatic flight control

systems in Chapter 11. The influence of requirements and of imperfec-

tions in the components is particularly pointed out. Multiloop flight

control systems of several types are treated as illustrative examples.

At the end of the book there are two appendices and a bibliography. The

bibliography supplements this book by providing references to those aspects

of aircraft dynamics and automatic control which are not extensively treated

here. Tt covers vehicle flexibility and other higher-order dynamic effects,

components, and descriptions of flight control systems. The first appendix

presents tabulations of dynamic characteristics for some representative air-

craft, and the second serves as a brier introduction to probability theory.
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1 .2 A DEFINITION OF FLIG11 C0 IROL

It is not surprising that, when considered in detail) the abstract

or physical attributes of an aeronautical vehicle or weapon system and

its elements are so interrelated as to almost preclude discussion of any

one aspect of the system without simultaneously treating most of the

others. Still, it ultimately becomes necessary to stake out definite

domains which can be treated more or less individually. This can be

accomplished with 6ou gunerality if other factors and entities in the

system can be considered either precursory or by definition separated

from the subject of special attention.

As a fir:,t step in separating the automatic flight control area from

other aspects of the over-all aeronautical vehicle or weapon system it is ,

necessary to distinguish control from guidance. Unfortunately the bound-

ary between these two areas is seldom inherently sharp because of basic

functional, operational, and equipment interac Lions which they may share.

As a practical matter, however, the following definitions can ordinarily

be used:

Guidance.... The action of determinin g the course and speed
relative to some reference system, to be folloved
by a vehicle

Control ..... The development and application to a vehicle cf
appropriate forces and moments which

Establish some equilibrium state of
vehicle motion (operating point control)

Restore a disturbed vehicle to its
equilibrium (operating point) state and/or
regulate, within desired limits, its
departure from operating point conditions
(stabilization)

To apply these definitions to a specific example, consider the air-

to-surface missile system sho'm in Fig. 1-3. In this figure the blocks

inscribed with capital letters in square brackets are not simple trans-

fer functions relating outputs to inputs, but instead are mtrix opera-

tions. It is readily apparent that the complete system, when viewed in

the large, is complicated and analytically intractable. However, two

major types of "loops" are seen to be present: one a series of "inner"
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loops involving the feedback of airframe motion quantities; the other an

outer loop containing the kinematic transformations required to generate

the relative orientation between target and vehicle, and closed through

a geometry sensor and computer which generates flight path commands.

Using the definitions given above it is now possible to separate the

guidance and the control areas, at least in terms of the matrix operators

shown in the block diagram.

Note, parenthetically, that an abstract or functional picture,

rather than one drawn in terms of physical equipment, is preferred at

this stage. If, for example, in Fig. 1-3 the Euler angles, 4', E, and T',

used as measures of vehicle motionwere obtained from a stable platform,

this equipment would have to be considered a part of the flight control

system; yet to many people the very words "stable platform" imply an

item of guidance equipment. 1k

On a physical basis Fig. 1-3 makes apparent an important distinction

between the two types of loops. The flight control loop is concerned

only with vehicle motion quantities measured in the aircraft (although

two references axis systems are necessary), while the guidance loop

involves axis system transformations which rut the vehicle and target on

comparable terms. For many systems this distinction is quite helpful in

separating guidance from control. There is little doubt that the control

of aircraft attitude angles is one of the functions of flight control,

while the control of the path is, strictly speaking, a guidance function.

later it will become clear, however, that there are pseudo path vari-

ablcs, such as pressure altitude and heading, which are measured in the

aircraft, and whose control, therefore, is logically considered to be a

part of the domain of flight control. Further, it is often possible to

formulate guidance problems, such as terrain avoidance and approach to

a. runway on a localizer beam, without involving more than linear approxi-

mations to the kinematic transformations in the guidance loop, and then,

with a single notable exception, guidance problems can be considered as

minor extensions to the problem of flight control.

The exception is in those cases where there are important dynamic

interactions between the control and guidance loops. The complex diagram
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of Fig. 1-3 can be simplified by specifying the general type of guidance

to be used and defining ideal steady-state "trajectories." The desired

steady-state conditions can then be used as "operating points," and all

of the equations indicated by the block diagram of Fig. 1-3 can be

linearized about these operating points. A simplified block diagram,

emphasizing the system dynamics in a form suitable for dynamic analysis,

can finally be drawn. Figure 1-4 shows "linearized" block diagrams

(derived from Fig. 1-3) which relate perturbed quantities when the

vehicle is on a straight line collision course with the target and is

operating about straight and level flight conditions.* Figure 1-5(a) results

when the longitudinal control system block diagram is redrawn so as to use

flight path angle, y, instead of pitching velocity, q, and plunging

velocity, w, as the motion variables. Here the geometry relationships

are shor. in a single blcck, while the flight control system portion of

the diagram is separated into functional divisions. Figure 1-5(b) goes

one step further and shows a single closed-loop flight control system

block with the geometry block broken into two parallel channels. Both

diagrams in Fig. 1-5 assume unity dynamics for the georetry sensor and

computer.
f

Figure 1-5 emphasizes the fact that the geometry block contains a

time-varying parameter (I - t/) where the time variable, t, appears

explicitly. The magnitude of the parameter defines the relative degree

of dynamic interaction between the flight control and the guidance. When

the ratio time:time-to-go, t/, is very small the sole dynamic effect of

the guidance elements is to add a unity feedback path to the closed-loop

flight control system. In most cases this effect, while certainly worthy

of consideration, does not complicate the problem. It can easily be

taken into account as just another loop in the flght control system.

On the other hand, as t/ approaches unity the g&ometry blook gain

01 I-7hile the implied assumption is surely a trcm'ndoucly simplifying
one, aeronautical vehicles do, in fact, spend most oC their time in the
air in straight and level flight, and the control system must be iinde
to work for that flight condition first, The choice of operating point,
however, is illustrative and is noL necessary to the argimen..
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approaches infinity and the dynamic interactions between guidance and

flight control may become the most prominent feature of system performance.

If the considerations exemplified in the discussions above are

generalized for a variety of guidance system types, it is found that

guidance and control can interact in only three ways. These are illus-

trated in Fig. 1-6 as connections betwreen the two parts of a guidance

and control dichotomy. The interaction with operating point control, as

illustrated in the example above, is the starting point in the develop-

ment of diagrams, such as the ones shown, which emphasize the dynamics.

Guidance system effects on limiting involve the characteristics of

particular physical mechanizations and, in any event, relate only to

conditions outside the realm of linear theory. Finally, dynamic intei-

action between guidance and control occurs only in homing guidance, and

even then the interaction is slight until the target is "close." On

these bases it should be clear that linear constant approximations to

flight control and guidance systems can be treated completely separately,

as far as their dynamics are concerned, for all guidance modes except

final "homing" maneuvers. Assuming, therefore, a particular operating

point - straight and level. flight-and neglecting a possible interest in

homing maneuvers, the subject of control can be separated from guidance,

and the synthesis of automatic flight control systems can be studied in

their own right.

1.r HY FDBAOK?

The flight control systems in Figs. 1-3 to 1-5 are, quite apparently,

showm as feedback systems in which a portion of each output is fed back

so as to modify the input. Effective flight control systems invariably

are feedback systems for a number of important reasons.

Even if invention bad ultiately produced a satisfactory "inherently"

stable aircraft, the disadvantage of open-loop, i.e. nonfeedback, control

would probably still preclude its use for the control of flight. Open-

loop controls are programmed and calibrated. Their proper operation

depends on the computation of an appropriate program and on naintaining

the calibration of the controlled element or object of control. In flight
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control applications the appropriate program is often of considerable

complexity, and a most notable feature of the aircraft's response to

control is that it changes markedly with speed, altitude, and loading.

The advantages of feedback control are:

* The provision of stability

* The adjustment of dynamic response, including

Reduction of lags

Provision of desired or specified command/
response relationships, especially as regards
the improvement of .linearity and the reduc-
tion of the effect of vehicle cross-coupling
forces

9 The suppression of unwanted inputs and disturbances

* The suppression of the effects of variations and
uncertainties in the characteristics of the controlled
element

Feedback can nke an unstable system stable. (It can, of course,

also make a stable system unstable, and that is a subject to which lie

shall have frequent occasion to return later.) Unfortunately, aircraft

* are never stable by themselves. At the very best they are neutrally

stable in htading and altitude, and continuous corrections must be nude

in order to fly a straight and level course. Otherwise, and this is

especially true of modern configurations, a disturbance may start an

aperiodically divergent motion, such as the one pilots sometimes call

the "graveyard spiral," or a similar disturbance my initiate weakly

damped or perhaps divergent oscillations in the rolling, yawing, and

pitching degrees of freedom. It is for the repair of any such defici-

encies in stability that the classes of automatic flight control systems

known as stability augmenters and -itomatic pilots are principally useful.

Feedback can improve the speed of response and nay be used so as to

enforce some desired correspondence between the input and output of the

system. The series of figures which have been presented have gerved to

emphasize the fact that one of the purposes of the flight control system

is to follow the commands generated by the guidance system. Rapid and

accurate response to cormnds, so that the commnded flight path is

matched by the actual flight path, for example, is nade poss'ible or is
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largely enhanced by the fedback of aircraft motion quantities. These

feedbacks have been illustrated and are defined in the figures to comprise

the flight control system.

It is not only the case that the (feedback) flight control system

will improve the speed of response and accuracy in following commands,

but, it will also tend to suppress the effect of disturbances, such as

the atmospheric (gust) disturbances illustrated in Fig. 1-3, as well as

the effects of changes in the characteristics of the vehicle's'response

to control. These are not the least reasons for employing feedback.

The aircraft must typically fly in atmospheric turbulence which tends

to upset it and to alter its flight path, and the response to control

may very well be substantially changed by the consumption of fuel, the

release of stores, and changes in the flight speed or altitude.

Some of the earliest inanimate feedback controls, aside from water

level controls which were known in antiquity, were speed regulators for

prime movers.* These were primarily designed to regulate against changes

in speed because of disturbances, such as changes in the load, or changes

in the response of the machine to control, such as a change in speed at

the same throttle setting because of an increase in steam pressure. The

early governors secured some of the very practical advantages of feedback,

but they also tended to display the largest disadvantage- a tendency to

hunt or oscillate. The phenomenon of hunting of engine governors moti-

vated a number of authors to study the stability of feedback control

systems and to lay the foundations of a mathematical theory of the sub-

ject. Among the earliest of these investigators was the physicist

J. C. Maxwell, who in his own paper on the subject conceded his

inability to discover the criteria for the stability of higher order

systems . Iater he was one of the emi.niners who set the subject "The

Criterion of Dynamical Stability" for the Adams Prize Essay Contest in

*James Watt is co.nonly credited with, the invention of the flyball

governor, about 1784, but it seems likely that these were in use on wind-
mills before his time. (See A. Wolf, A History of Science, Technoloff
and Philosophy in the XVlIIth Cent'_ry, The Macmillan Co., New York, 1939.)

tJ. C. Maxwell, "Oi Governors," Proc. Roy. Soc., (London), Vol. 16,
1869, pp. 270-283.
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1877. The prize was won by E. J. Routh,* who considered not only govern-

ors but the stability of genera. motion of rigid bodies. His studies in

that field became the basis for the investigation of the dynamic stability

of aircraft and for many years provided the principal tool for the study

of feedback control systems.

1.4 EARLY HISTORY OF THE BUBJECT OF AIRCAFT DYNAMICS

F. W. lanchester was the first to investigate analytically the

dynamic stability of aircraft. Before the turn of the century; he experi-

mented with glider models and studied the properties of the solutions to

a simplified set of equations for motion in the plane of symmetry.t He

called the resulting flight paths "phugoids," a name which persists to

this day.

In the year of the first powered flight, 1903, Bryan and Williams,

using more conventional vathenatical methods, introduced the linearized

equations of motion which have been the foundation of studies of dynamic

stability and response to control ever since.t later the theory of both

the longitudinal and lateral motions was presented by Bryan.9 The six

Euler equations for the general motion of a rigid body were considered

for "smnll" departures from steady, straight flight of an airplane with

a plane of symietry. Under these assumptions, the equations were shown

to be separable into two groups of three each. One group related the "

motion variables in the plane of symmetry, while the other group related

*E. J. Routh, Stability of a Given State of Motion, Macmillan and Co.,

London, 1877.

tF. W. Lanchester, Aerodonetics, Archibald Constable and Co.,
London, 1903. See also B. Melvill Jones, "Dynamics of the Aeroplane,"
in W. F. Durand, ed., Aerodynam-ic Theory, Vol. V, Durand Reprinting
Committee, Pasadena, Calif., 1943; republished (Vols. V and VI bound
in one volume) by Dover Pablications, New York, 1963; pp. 2-3,
169.

fG. H. Bryan and W. E. Williams, "The Longitudinal Stability of
Aerial Gliders," Proc. Roy. Soc., Vol. 73, No. 489, 1904, pp. 100-116.

6G. 11. Bryan, Stability in Aviation, Macmillan and Co., London, 1911.
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*

the motion variables out of the plane of symmetry. Neither group con-

tained any variable which occurred in the other, so that they could be

treated entirely separately. The separate groups of equations were

called the "symmetric" or longitud.nal and the "asymmetric" or lateral

equations. A further consequence of the assumption of biwall perturba-

tions was that the air forces on the airplane could be shown to depend

on certain constants or "stability derivatives" as they were called, and

Bryan suggested that these might be determined experimentally..

As early as 1912, Bairstow and Melvill Jones, at the National Physical

Laboratory in Great Britain, had taken up Bryan's suggestion and had

deve.loped some of the wind tunnel techniques for measuring the

stability derivatives of models. They reported the results of their,

initial effort the following year, showing how features of the motion

could be recognized in the mathematical solutions for the free response

of a hypothetical airplane for which they had measured or calculated all,

the derivatives.* In both language and notation this report is

thoroughly "moden"; it might be used as a text on the dynamic stability

of airplanes today.

The theory and the experimental practice were subsequently extended

by the original investigators and others. Bairstow considered the sta-

bility of more complicated motions such as circling flight, and treated,

the motion of dirigible airships. He provided a comprehensive account

of the subject in 1920. Hunsaker, who had visited the National Physical

laboratory in 19141, introduced Bairstow's wind tunnel techniques and the

method of Bryan and Bairstow for the calculation of dynamic stability in

the United States. He collaborated on the first report of the United

States National Advisory Committee for Aeronautics which was concerned

with the response of aircraft to gusts.I Glauert calculated the stability

*L. Bairsto, B. Melvill Jones, and B. A. Thompson, Investigation

Into the Stability of an Airplane A.R.C. R&M 77, 1913.

tL. Bairstow, .App ied Aerodyn i n cs Longmans Green and Co., London,
Ist ed., 1920, 2nd ed., 1939.

tJ. C. Hunsaker, R eriiental Analysl s of Triher ent Longitudinal
Stability for a Tpi a Biplane, ,ACA Th 1) Pt. I, 1915. See also

iDynaa.c Stabi* ity of Aeroplanes," STithson-ian Misc. Collection, 1916.
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derivatives of a running propeller and the motions of an airplane withr the elevator free.* The model measurement I or calculation' of particular

stability derivatives continued to attract attention, and a considerable

effort was made to measure derivatives, free motions, and the response

to controls in full scale flight tests. The references given in the

footnotes are only typical, not comprehensive. More details are given

in the historical sketch appended to the 1947 paper by Milliken,"I and

anecdotal accounts of the work of the British pioneers are presented in

several cdntributions to the "Centenary Journal" of the Royal Aeronautical

Society,l particularly the ones by A. V. Stevens, Sir Harry Garner,

J. L. Mayler, and R. W. McKinnon Wood.

Certainly by 1935, when the survey by B. Melvill Jones appeared 'in

Durand's Aerodynamic Theory, the classical approach of Bryan and Bairstow

was well established, but was very little used. Results of the full scale

experiments had led to the conviction that the theory of infinitesimal

16H. Glauert, The Stability Derivatives of an Airscrew, A.R.C.
R& M 642, Oct. 1919. See also The Longitudinal Stability of an Air-
pian A.R.C. R&M 638, 1919.

t L. W. Bryant and H. B. Irving, Aparatus for the Measurement of Mq
on a Complete Model Airplane. A.R.C. R& M 616 1919.

*W. L. Cowley, The Effect of the Lag of Downwash on the Longitudinal

Stability of an Aeroplane..., A.R.C. R&M 718, Feb. 1918.

1H. Glaucrt, Analysis of Phugoids Obtained by a Recording Airspeed
Indicator A.R.C. R&M 576, Jan. 1919.

E. P. Warner and F. H. Norton, Preliminary Report on Free Flight
Tests NACA TR 70, 1919.

F. H. Norton, Practical Stability and ControLlability of Airplanes,
NACA TR 120, 1921. (See also NACA TR 112, TR 167, and TR 170.)

M. A. Gerner and S. B. Gates, The Full-Scale Determination of the
Lateral Resistance Derivatives of a Bristol Fighter, A.R.C. R&M 9871
Aug. 1925. (See also A.R.C. R&M 1068 and R&M 1070.)

H. A. Soule, and J. B. Wheatley A Comparison Between the Theoreti-
cal and Measured Longitudinal Stability Characteristics of a Airplane
NACA TR 442, 1933.

"N. F. Milliken, Jr., "Progress in Dynamic Stability and Control
Research," J. Aeron. Sci. Vol. 14, No. 9, Sept. 1947, pp. 493-519.

1"Centenary Journal, Royal Aeronautical Society 1866- 1966,"
Jo Ro. Aeron. Sci., Vol. 70, No. 661, Jan. 1966.

1-215



motions was practical for the prediction of the stability of motion, the

time history of the motion following a disturbance. and the response to

the application of control. The effect of variations in the configuration

of a typical airplane had been traced, via their influence on the deriva-

tives, to the result in terms of stability of motion. Furthermore, these

results were appreciated not only in terms of the solutions to sppcific

numerical examples, but more generally, at least in part, as approximate

solutions given in terms of the dominant literal stability derivatives.

Melvill Jones himself, speaking~of complete solutions to the equations

of motion and of approximate solutions to the stability quartic equations

evaluated the state of affairs in the following words:

"In spite.. .of the completeness of the experimental and theoretical

structure... it is undoubtedly true that, at the time of writing, calcu-

lations of this kind are very little used by any but a few research

workers. It is in fact rare for anyone actually engaged upon the design

and construction of aeroplanes to make direct use of [such] computa-

tions..., or even to be familiar with the methods by which they are

made .... In ny own opinion it is the difficulty of computation.. .which

has prevented designers of aeroplanes from making use of the methods....

"Though the process.. .will, if worked correctly, give the final

answer required, it is so involved that it is not easy to trace the

connection between the final answer and the separate characteristics of

the airplane which are represented by the various derivatives included

in the equation of motion.

"With regard to the response to specific disturbances no convenient

means of tracing this connection has yet been deviced; but when.. .the form

of the solution of the quartic for X [i.e., the frequencies and damping

factors of the free modes] in nornal flight is all that is required, the

omission of certain terms, which are then relatively unimportant, allows

such drastic sinplifications to bc made that the relation between cause

and effect can b- displayed with comparative care.".*

*B. elvill Jones, "Dynwnics of the Aeroplane," in W. F. Durand, ed.,
Aeronamic Thiory, Vol. V, Durand Reprinting Comuittee, Pasadena, Calif.,
191 5;rcpublished (Vols. V and VI bound in onc voluiie) by Dover Publica-
tions, New York, 1963i pp. 2-3, 169.
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The situation was hardly altered during the next ten years. Inrspite of the introduction of the method of operators, * which did reduce

the labor of computation, and in spite of earnest efforts to make the

techniques as simple and general as possible by introducing a non-
t

dimensional notation, and by suimarizirig information on the stability

factors in convenient charts, and, further, in spite of hortatory

expositions of the theory, I designers of airplanes continued to disdain

dynamic stability analysis.

Nevertheless, research continued at a pace which was accelerated by

the advent of the war, and some improvements were made in the understand-

ing of, for example, the importance of wing/fuselage interference and

power effects on the stability derivatives. the effect of closely balanced

free controls on the motion, the response to particular motions of particu-

lar controls, such as spoilers, and the influence of changes in design on

the character of the motions.

*L. W. Bryant and D. H. Williams, The Application of the Methd of

Operators to the Calculation of the Disturbed Motion of an Airplane
A.R.C. R&M 1346, July 1930.

R..T. Jones, A Simplified Application of the Method of Operators
to the Calculation of the Disturbed Motion of an Airplane, NACA TR-560,
1936. See also "Calculation of the Motion of an Airplane Under the
Influence of Irregular Disturbances," J. Aeron. Sci., Vol. 3, No. 12,
Oct. 1936, pp. 419-423.

A. Klemin and B. F. Ruffner, "Operator Solutions in Airplane
Dynamics, " J. Aeron. Sci, Vol. 3, No. 7, May 1936, pp. 252-255.

tH. Glauert, A Non-Drensional Form of the Stability Equations of
an Aeroplane, A.R.C. R&M 1093, 1927.

tS. B. Gates, A Survey of Lonaitudinal Stabilitz Below the Stall
With an Abstract for Designcrs' Use, A.R.C. R&M 1118, July 1927.

C. H. Zimmerman, An Aralysis of LonGitudinal Stabi) ity in Power-Off
Fli t with Charts for Use in Design, NACA TR-521, 1935; also An Analysis
of L.ateral Stability in Power-Off Flight with Charts for Use in Desgign,
NACA TR 59 , 1937.

10. C. Koppen, "Happier Landings," Avlation, Sept. 1934$ "Control
Sensitivity," Aviati_, Oct. 19351 "Smart Airplanes for Dumb Pilots,"
paper presented to th2e SAE, Detroit, Mich., Jan. 19363 "Airplane Stability
and Control from the Designer's Point of View," J. Aeron. Sci., Vol. 7,
No. 4 Feb. 1940, pp. 135-140.
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The point of view then current, however, did not permit -ne (with

very rare and soon forgotten exceptions) to consider the response of the

airplane under the continuous action of the controls, i.e., as a feedback

system. The controls were, almo3t invariably, considered as:

" Fixed, as in the earliest studies

* Free, i.e., restrained only by aerodynamic hinge
moments (or later by friction as well)*

* Programmed, i.e., moved as a simple function of time,
such. as a step or ramp function or a smooth pulset

It nay have been not only the fact that the calculations were laborious,

but also that the assumptions of the walysit appeared unrealistic, vhich

dis6ouraged their use in design. The stability of unattended motion with

the controls fixed or free a"d the resp - e to progrmmed control motions

were and are, indeed, of sone interest in connection with the dynamics of

an airplane, but it is evident that the humn or an automatic pilot f]les

by operating the controls mor or less contnuously. The airplane plainly

is an element in a system which Includes a hu=ran or an automatic pilot.

This view did not come to be generally accc.ted until after the war, and

the understanding of convenient means of tracing the connection between

the response to specific disturb"nces, ruch as the operation of the con-

trols, and the characteristics of the airplane which are represented by

the various derivatives vms of an even later date.

1 .5 WLYI HIBTOra OF AUXVATIC PLI.1 OiUOL

The development of automatic flight, like the development of airplanes,

themselves, proceeded for a long time without the beneff.t of very little

thcoretical. knowledge.

* H1. Glauert, The Longitudinal Stability of an Aer9o3. n A.R.C.
R&M 638, 1919.

R. T. Jones and D. Cohen, Analysis of the Stabi)Lty of an Airplane
with Free Controls, NACA TR 709, 19F-.

t R. T. Jones, A Sinlpif' ic__nltati.on of the Method of Operators to
the Calculation of the Dishurbc'd Motion o1' an Airpline, 1ACA TR 560, 1936.

K. Mitchell, Lateral Rcs)o=ne heor y, R.A.E. Rept. Acu'o. 1932,
Mar. 19)111.
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Sir Hiram Maxim (18ho- 1916) was a prodigious inventor and when, in

1891j, he turned his attention to the design and construction of a heavier-

than-air flying machine. hc proposed to secure its longitudinal stability

by means of a servo drive md automatic feedback. The devices which are

described in Maxim's book* and are illustrated there by a photograph of

the installation in an airplane are surpri singly modern in concept and

in execution.

A steam-driven pendulous vertical gyroscope was made to operate a

valve which ported steam to a servo cylinder.t Motion of the piston

drove the elevators, and the feedback link from the piston reposidioned

the gyro-operated valve body so as to close the valve. In principle,

this "gyroscopic apparatus for automatically steering [the] machine in

a vertical direction" is indistinguishable from the elevator control

portion of automatic pilots of much more recent date. Easily recogniz-

able are the elements of any automatic flight control system: the sensor

(gyroscope), the amplifier (valve), and the control surface positioning

servo. Unluckily, tests of the flying machine for which the gyroscopic

control was designed ended in disaster when the aircraft lifted off the

tracks designed to restrain it, turned over, and was destroyed. Maxim,

who felt that his special contribution was to be the development of

lifting surfaces and power plants, thought that the point about lift and

power had been proven, and the inventor turned his energies in other

directions.

Still in the nineteenth century, however, successful gyroscopic

feedback control of the "flight" path was demonstrated by Ludwig Obry,

an Austrian, who in 1894 introduced a course-keeping gyro as an improve-

ment for the naval torpedo invented by Robert Whittehead in 1866.

11. S. Maxim, Artificial and IaturalF. t, Whittaker and Co.,

London 1908, pp. 9-9 .
tThe principles of steam and hydraulic servornotors had already been

known for some time. See A. B. Brown, British Patent No. P253, 1871,
and J. Farcot, Le Servo Motcur ou Moteur Asservi. Governails, a Vapeur
Farcot, Dcscription Theoretique et Pratiqie J. Baudry, Paris, 1873.
Among early applications to vehJcle contiol were steering engines for
steamships.
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(Whitehead's torpedo had an automatic depth control.) Only a little

later the principle of gyroscopic stabilization of ships vas introducedp

and, although depending on a completely different principle, was the

model for the next attempt at gyroscopic control of an aircraft. In

1909-1910 Dr. Elmer Sperry attempted to make a gyroseopic "stabilizer"

for an airplane. This was a rigidly mounted engine-driven wheel with

its spin axis vertical. It would have opposed rolling motions with a

pitching torque and vice versa. It was apparently never brought to a

test because of the lack of success of the airplane in which it was

installed, but It served as the inspiration for further trials.*

Between 1910 and 1912 Dr. Sperry and his son Iawrence developed and

installed, in an airplane belonging to Glenn H. Curtiss, an all-electric

two-axis automatic pilot. Roller contacts on a gyro platform, meacuring

the bank and pitch angles, actuated solenoid clutches which connected the

ailerons and elevator to a propeler-driven "air turbine," and motion of

the surfaces repositioned the contactor segments' (e.g., see Fig. 1-7).

AIRMv- - - ' ?dv 4f1

CkMNA A4 AV 0%d~ -Vf4 rMW7

Fig- 1-7. Diagrammatic Plan of Sperry Automtic Pilot

*C. S. Draper, "Flight Control, " J. Ray._ Avron. foc, Vol. 59, July1955, pp. 451-477.

t0he observer vividly recalls the loud groaning noise which this type
of automatic pilot made. Presimmbly, the noise came from the grinding of
the toothed clutch faces. See the "Discussion" roy Dr. A. L. Rawlings ofarticle by F. W. Meredith and P. A. Coohe, Aeroplane Stability and Auto-
matic Control," in J Roy. Arroon. Soc., Vol. 60 No9 31% June 193y,
pp. p. I 51-77.
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The machine was artnonced to the public in October 1912. In 1914 the

aircraft antd its automatic pilot were entered in a safety contest spon-

sored by the Aero Club of France. Lawrence Sperry made a dramatic

demonstration of automatic flight as he flew at low altitude along the

Seine in the vicinity of Paris, standing upright in the cockpit of the

Curtiss flying boat, holding his hands over his head, while his mechanic

walked out along the wing. The quaint photograph of this event has been

reproduced by Bollay and by Richardson among others.* A similar demon-

stration was planned for early the next year in New York, but there the

aircraft was overturned and extensively damaged by wind before the demon-

stration of its performance could be satisfactorily copleted.t

This first automatic pilot was intended as an aircraft "stabilizer."

In other words, it was intended to supply stability, as we now say,

"artificially," to aircraft which were often painfully deficient in this

regard. Other inventors were pursuing the same goals by the same and

other means. Feedback of angle of attack and angle of sideslip, speed,

longitudinal, side, and normal acceleration, lift, and body axis rates,

as well as attitude angles were all tried singly and sometimes in combi-

nation. Clarke$ in an early paper described some of his own experiments

in Great PFriiain, while Haus! has sketched some of the history of early

developments on the continent of Europe (see Table I-I). However, none

of these original inventors were successful enough so that his device

passed immediately into common use.

The design of aircraft made giant strides during the 1914-1918 war

and it was found that sufficient "stability" for the human pilot's use

*W. Bollay, "Aerodynamic Stability and Automatic Control," J. Aeron.
Sci., Vol. 18, No. 9, Sept. 1951, pp. 569-624.

K. I. T. Richardson, The Gyroscope Applied, The Philosophical Ibrary,
new York, 1954.

t"The Sperry Gyroscopic Stabilizer," Flight, No. 318 (Vol. XII, No. 5)
Jan. 29, 1915, pp. 74-76.

tT. W. K. Clarke, "Auto-mcchanical Stability," Aeron. J., Apr. 1912,
pp. 101-115.

§Fr. Haun, Auto.atic Stability of Airplanes, NACA TM 695, Dec. 1932;
4 Automatic Stabilizatlon, NACA TM 802, Aug. 1936, and TM 815, Dec. 1936.
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could be supplied by suitable choice of the size and shape of the aero-

dynamic surfaces. Actually many aircraft were still unstable, but not

dangerously so, and, with reference to the ground, the human pilot per-

formed the stabilizing and control functions of the (feedback) control

and guidance systems. Neither artificial stabilizers nor automatic pilots

were found to be particularly useful on the manned warplanes. They, in

effect, disappeared from view. Under the cover of military secrecy,

however, the development of the automatic pilot was continued for possible

application to pilotless aircraft, and indeed in 1917-1918 Iawrence

Sperry completed the construction and test of an "aerial torpedo" for

the U. S. Navy.* In an advanced version the aerial torpedo was even

rem6tely controlled by radio. The success of the project, however, came

too late for the use of a "flying bomb" in the First World War. Follow-

ing the war, and turning to more prosaic applications, the 'Sperry

Gyroscope Company had, by 1932, developed an avtomatic pilot for possible

commercial transport uset (see Fig. 1-7). Eicept for the gyroscopic

references which comprised the then new directional and vertical gyro-

scopes and the fact that it provided for control about all three aircraft

axes, this automatic pilot retained many of the features of the original

one of 1910-1915. Better things, however, were just around the corner.

In 1933 the prototype of the A2 automatic pilot was under construction.

It featured pancl-mounted gyroscopeo with pneumatic pickoffs and three-axis

control with proportional hydraulic servos. When Wiley Post, visiting the

Sperry factory, saw it, he insisted that it be installed in his Lockheed

Vega 5-C.1 Daring the period 15-22 July 1933 Post, flying alone, set a

round-the-world record of 7 days, 18 hours. The performance and relia-

bility of the autoratic pilot, which allowed the human pilot to perform

the navigator's function and even to nap in flight, played a considerable

*P. R. Bassett, "Instruments and Control of Flight," Aeron. Eng. Rev.,
Vol. 12, No. 12, Dec. 1953, PP. 118-123, 133.

tE. A. Sperry, Jr., "Description of the Sperry Autoimtlc Pilot,"

Aviation Eng., Jan. 1932, pp. 16-17. See also E. S. Ferry, Aplie_d
GyrodynamicS, John Wiley and Sons, New York, 1932, pp. 123-125.

.Bassett, loc. cit.
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role in this feat. The prototype automatic pilot used by Wiley Post,

together with his airplane, the "innie Mae," are in the National

Aenautical Collection of the Smithsonian Institute in Washington.

The A2 automatic pilot came into widespread use among the airlines

during the 1930's. This was due partly to its demonstrated reliability,

partly because the panel-mounted instruments then coming into extensive

use for routine operations under low visibility conditions supplied its

gyroscopic references (an obvious econovy in cost and weight), and

partly because airplanes had achieved a range performance which made

pilot relief attractive. The A2 was first introduced to airline service

on the Boeing Model 247 in 1934. Its defects, if any, were its virtues;

it flew straight and level. It was not designed for maneuvering.

In effecti.this automatic pilot provided for control surface deflec-

tions in three axes which were proportional to the departures from the

reference attitude. (A description of its operation is given by

Richardson,* among others.) It was as if the surfaces were "geared" to

the instrument (see Fig. 1-8). This concept of "gearing" was frequently

employed in some of the early matheatical studies of automatic control

of aircraft, but it lacks the generality offered by the concept of

feedback.

During roughly the same period of time (1 922 -1937), somewhat simiar

automatic pilot developments were uider way in Great Britain, although the

aim there was the satisfaction of military requirements and the work was,

at first, carried out in secrecy 1 Interestingly, in both the earlier

*Richardson, loc. cit. See also: P. R. Bassett, "Development and
Principles of the Gyroplot," Instruments, Vol. 9, N6. 9, Sept. 1936,
pp. 251-2541 The Sperry Aircraft Gyropilot Sperry Gyroscope Co.
Publication 15-665, July 19210.

tA canprohensive bibliography of Britlsb and foreigr work on automatic
flight control, both theoretical and experimontl, from 1903 to 1957 has
been prepared by the Royal Aircraft Establishmxent. Se R. C. Wright,
A. T. E. Bray, and H. R. Hopkin, List of Publ__Jshed and_ Uublished Ref-
erences on the Remote and Automatic Control of Aircraft and _WUssile _Pilotless Target Aircraft, Autopilots and Gyroscopi€ Flight Instruments,
Inertial Guidance and Automatic Landing of Arcraft R. A. E. Library
Bibliography No. 22, Ministry of Aviation, Sept. 1960 (RESTRICTED
DISCREET)
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(1Wrk I) and later (Mark VII and Mark VIII) versions the BrLtish pursued

the design of two-axis controls with great diligence. The Mark I used a

single free gyroscope measuring heading and pitch to control the

rudder and elevators by means of low pressure pneumatic servos. An

account of the results of the early efforts vas presented by the pioneers
Meredith and Cook of the Royal Aircraft Establishment in 1937.' This '

account describes the use of the autoratic pilot in aerial uap-making

and suggests its superiority over the Sperry three-axis decign for

applications requiring maneuvers. It also shows the considerable

acquaintance of the authors with the theory, methods, and conclusions of

their colleagues at the Royal Aircraft Establishment who had been engaged

in the study of the dynamic stability of airplanes. The action of the

automatic pilot was clearly explained in those terms. In fact the methods

of dynamic stability analysis had been applied in the design of the R.A.E.

flight control equipment from 1924 on, but very few results were ever

published in the open literature.

Follming in the footsteps of Bairstowt and Glauert' and using a

method developed by S. B. Gates,0 who employed it in the obscure R.A.E.

Beports BA 487 and BA 494, Garner, in 1926, made an analysis of the

lateral/directional motion of an airplane under the 'influence of feed-

back control. Gates assumed that the controls were moved according to

certain "laws," e.g., in proportion to certain output variables and

their derivatives. He also stressed that good stability was not enough,

F. W. Meredith and P. A. Cooke, "Aeroplane Stability and the
Automatic Pilot," J. Roy. Aeron. Soc., Vol. 61, No. 318, June 1937,
pp. 415- h36.

tL. Bairstow, .ied Aerodynamics, Ist ed., Lonoivans Green and Co.,
London, 1920.

tH. Glauert, Sum ary of the Present State of Knowledge with Regard
to Stability and Control of Aeroplanes, A.R.C. R&M '110, Dec. 1920.

IS. B. Gates, Notes on the Aerodynamics of Autoratic Directional
Control, R.A.E. Rept. No. BA J]t"7, 19 Fcb. 1, and Notes on the Aero-
dynwnics of an Altitude E2evator Control, R.A.E. No. BA h9Ti91,9 Mar. 1924.
(The latter report dis usses the instability of altitude control with
elevator at speeds below the speed for mininun power required.)

11H. M. Garner, Lateral Stability eth Special Reference to Control.ed
Motion, A.R.C. !I&M 1077, Oct. 1926.
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Fig. 1-9. Assembly Sketch of Sperry Stabilizer

it being essential also to consider the amplitudes of the several modes

of motion. With similar assumptions, Garner calculated the stability of

the undisturbed motion and the transient motion, following an initial dis-

turbance, under the influence of the feedback control system. It was

specifically pointed out that the movements of the controls might be

regarded as made either by the (human) pilot or by some mechanical means.

Garner then further had the wit and vision to make provision in the theo-

retical trea-nent for "lag" in the application of controls, and was able

to point to a qualitetive correspondence between his analytical results

and flight tests of an R.A.E. (automatic) rudder control which had

appreciable "reactlon 3ag." Only shortly after Garner's report there

appeared a further contribution by Cowley* which proposed more elaborate

methods of taking into account the time lrg in the application of control.

Both a pure tlxie delay and a second-order lag were successfully treated.

OW. L. Cowley, On the Stability of Controlled Motion, A.R.C. R&M 1235,
Dec. 19 I.
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It now seems surprising that these papers are not given more prcmi-

nence in accounts of the development of the theory of automatic control'

systems. Perhaps they were simply too far ahead of their time. Perhaps,

on the other hand, it was only in Great Britain where automatic flight

control system development was the responsibility of a government research

establishment that it was thought to be desirable to make response calcu-

lations in connection with the design of "practical" systems. In spite

of an apparently adequate theory, however, stability difficulties attended

the early flight trials of the R.A.E. Mark IV automatic pilot circa 1934.*

A solution to the problem was apparently not found by analysis or simula-

tion. The problem went away when the autopilots were installed in the

larger aircraft for which they were intended, no doubt because of the.

larger inertia and slower response of the multiengined bombers.

Comprehensive details of subsequent British Automatic pilot develop-

ment (1937-1947) as well as comments on American and German efforts are

set forth in the report by Hopkin and,'Dunn.t Included there is the story

of the uniquely conceived Mark.VII autopilot. In this device the elevator

was moved in response to airspeed error and error rate, while the ailerons

were actuated by a combination of yaw and roll signals detected by a free

gyroscope. The rudder was left free. Calculations showed that the

stability properties of this arrangemont should have beon satisfactory,

as indeed they were. Unfortunately, although the performance in average

weather was good, in vLry rough air and in some aircraft at low speed,

the elevator, responding to detected changes in the airspeed and air-

speed rate, caused volent changes in pitch attitude. These were large

enough in some eases so that the acceleration on the fuel system caused

the engines to stop monentnr 'y. Later the matter was Investigated

*IIR. Hopkin and R. W. Dunn, Theory an d )cv eloj)e .t of Autoa ticPilot __1937 - 101(, Royal Airc. Es'."'e'7lA}."]DM o ap},

t}Iopd n" and Dunn, however, omi.t any ienl.ion oP the }lol.) ock/Brol.;n
all hydraulic autom;tie pilot. This again i.'un a two..axis unt driving
the elevators .nd rmddcr. It is descibd In the article "A oew Auto-
matic Pilot," Fl11ght, Vol. 27, No. 13'0, I), 1-hr. 19.
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theoretically by Ncumark* and by Sudworth and Hopkin.t They were quite

able to identify the source of the difficulty and to show that the

calculation of damp'!ng factors alone was not sufficient to insure

satisfactory performance. At the R.A.E. similar calculations were

made both by hand and with a mechanical differential analyzer. Very

few of the results, however, were published. The understanding of

response to specific disturbances which Gates had stressed and for

which B. Melvill Jones had predicted was thus only modestly enhanced.

Interestingly, by 19Y5 the German firm of Siemens had developed an

elevator control which successfully used an airspeed reference, and a

rudder control with one of the earliest magnetic compass tie-ins.f

Hydraulic positioning servos were employed to move the surfaces, but the

key feature in both cases was the use of a rate gyro feedback. The

rudder "course control" was an independent unit. In Germany it was

argued that only the largest and heaviest airplanes would require a com-

plete automatic pilot, but that practically all small and medium machines

could make good use of a course control.1

The firms of Siemens and Askania both developed three-axia autom:tic

pilots which included an independent course control,11 but during the war

they concentrated on the production of the single-axis units. Eventually

more than 80 percent of the aircraft in the Gernan Air Force were equipped

*S. Neumark, The Distu'bed Iongitudinal Notion of an Uncontrolled
Aeroplane and of an Aeroplano with Autoiatic Contr)2 A.R.C. R& M 20'78,
Jan. 191 3.

tj. Sudworth and H. R. Hopkin, Influence of Automatic Pilots in

Stabilization and Dynaic Stability in Pitch, R.A.1. Tech. Note

No. Instn. '(75, Jul f955.
1Fr. Haus, Autam-atic Stabilization, NACA IM 802, Aug. 1936. See also

"Siemens Autopi~ot," Flight Vol. 2'(, No. 1359, 10 Jan. 1935, pp. hl1-42.

1G. Klein, "Bedeutung autom-ttlscher Fluezeugsteuerungen fur den
Flugzeugbau," Jahrbuch 1938 der Deutscherluftfah rtforschung, Frgn zungsband,
R. 0 denbourg, Manich and Ber: in, 195b, pp. 2i7- .

1IE. Fi.schel, "Vefahren und Wiauglicdor automatischer Faurzeutsteuerugan,
Jahrbuch 1938 dcn' Deutscher Luftfr1Jrtforsichig Eri, nzu ingsbl n d, R. Olden-
bourg, 14'ni.ch 2n ] II, 19 :$ 1p. 721 -23o7
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with similar automatic stabilizers. A schematic diagram of the Siemens

K-12 unit is shoim in Fig. 1-10. It was recognized at an early date that

such a control could be used to supplement any deficiency in the aerody-

namic damping about the yaw axis, * and that the course-holding feature)

providing the airplane with a heading sense, would permit uhattended

operation, to a degree, so that even a pilot inexperienced in instrument

flying could conduct operations in instrument weather in comparative

safety. It may be noted that the methods of mathematical analysis which

were introduced by Oppeltt for the study of automatic course-holding

were rather sophisticated for their time. While he used much simplified

linear equations to represent the aircraft in the 1937 paper, he also

used phasor diagrams and approximate describing functions for f:.'iction

and hysteresis to explore the deleterious effects on the action of the

automatic control of these and other imperfections in the system ,

such as quantized signals, and he pointed to the use of a rudimentary

simulator as a means for exploring the effect of nonideal equipment

characteristics in practice.

later, during the war, the Germans introduced the rate-rate principle

in the Siemcns K-23 and Askania PKS-12 "fighter" course controls, and also

in the experimental Patin three-axis automatic pilot. (Here the surfaces

were made to move at a rate proportional to the rate of body axis rotation

measured by a rate gyro, but dwnping was insured by electrical differentia-

tion of the signal in the case of the Siemens and Askania units and by

special design of the gyros to pick up a component of angular acceleration

in the case of the Patin design. No feedback units measured the output of

the servos.) All three of these control systems were all-electric.

It can be appreciated, even from this abbreviated account,, that

airplane automatic pilot development proceeded quite independently in

*K. Wilde, "Uber neucre Arbeiten auf dem Gcb'iet der automatischer

Steucrungen," Jahrbuch 1938 der Deutscher Luftfahrtforschung Er~nungsband
R. Oldenbourg, Munich and Berli9Z, pp......

tW. Oppelt, "Die FlugZeugkursteueruug im CeraduuA flug, " Jahrbuch
1937 der Deutscher Luftfabrtforschun, R. Oldenburg, Muich and Berlin,

1950, pp. 111-2P- 1Ii-T,5'i aso Cowp .rison of Mitcmatic Control Systelns,
NACA 'M 96)6 Feb. 1941 1.
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Germany from its course in the United States and in Great Britain. Sane

idea of how it might have evolved can be obtained from Dudenhausen' s*

description of a three-axis rate-rate automatic flight control system

actually built in 1955 but based to a large extent on developments carried

out -hist before the final collapse of Hitler's armies. (It is further

amusing to note in the same issue of Luftfahrttecknik in which the

Dudenhausen article appears that a speaker from an American company,

tracing the history of automatic pilot development, says that course

control was easily added after the more difficult problem of stabilizing

the aircraft in pitch and roll was accomplished. His German translator

felt constrained to correct him. From the German point of view the

course control came first-t)

The Germans were also, of course, very active in the development of

pilotless aircraft and missiles. f The V-i flying bomb had a conventional

two-axis (elevator and rudder) automatic pilot with altitude and compass

tie-ins (see Fig. I-i1). An air mileage counter determined when the

firatl dive should begin. And in spite of its, In many ways, very advanced

technology the V-2 (A-4) simply used two free gyros- the raster control

gyro to control yaw and roll, and the "verticant" to control pitch by

means of hydraulic servo-driven vanes in the exhaust blast of the rocket

engine (see Fig. 1-12). A pitch maneuver was preprogrammed and thrust

was cut off by an integrating accelerometer. Provision was made for

monitoring and correcting the course with a radio beam. The gyro and

vane arrangement was somewhat similar to the one evolved some time

*H. J. Dudenhauscn, "Dreiachsen-Flugregelung fMr Hochleistungsflugzeuge
mit Integrations-1endekreiseln als Hauptrichtgeber," Luftfahrttecknik,
Band It, Nr. 3, 18 Mar. 1958, pp. 49-58.

tJ. F. Wiren, "Geschichtliches zur Entwicklung der Flugregelungen,"
Luftfahrttecknik, Band 11, Nr. 3, 18 Mar. 1958, pp. 46-68, and notes
y the trnslator, Dpl. Ing. Manteufel.

tT. H. Benecke an A. ':. Quick, eds., History of German Guided Missiles

Voilag E. Appelhans and Co., Brunswick, Germany, 1959.

J. N. Thiry, Control Projects in the German Ar.y, Air Force, and Navy,
unpublished translation of a German report with the saene title written in
Aug. 190i, 10 Sept. 1958.
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earlier (1932) by the pioneer R. H. Goddard for the control of his

rockets.*

Beginning in 1941 there was a considerable amount of activity in

the United States aimed at the development of electric autpmatic pilots

ultimately capable of accepting maneuvering comands either from the

human pilot or from some other source of guidance information, such as

a bombsight. The first of these "all-electric" automatic pilots was the

C-1 built by the Minneapolis-Honeywell Regulator Company! It was

installed in all the American four-engined bombers, such as the B-17,

B-24, and B-29. In the C-1 deviations from the reference attitude in

pitch, roll, and yaw were measured with vertical and directional gyro-

scopes, as in the Sperry A2 design, but the amplified signals were

applied to electrical positioning servomotors driving the elevators,

ailerons, and rudders. The automatic pilot unit was specifically

designed to slave the aircraft to coands originating in the bombardier's
operation of the bombsight, but a single-knob turn control, and later a

"formation stick," was also provided for the pilot. Erection cutout in

turns was one of the novel features of this automatic pilot. The elec-

trically driven gyroscopes were not intended to be used as flight instru-

ments. Iater, in the C-1A (194i5), a number of improvements were introduced

including the addition of a yaw rate gyro signal to the rudder.

This unit was closely followed in time by the General Electric design,

which was similar to the Sperry pneumtic/hydraulic A2 unit in its func-

tions, and which differed from the C-i in its design mainly in that the

electrically driven gyroscopes were also the panel-mounted flight instru.

ments, and in that electrohydraulic positioning servomotors provided the

*M. Lehman, This High Man: The Life of Robert H. Goddard Farrar
Straus and Co., New York, 1963, pp. 202 et _

tW. H. Gille and R. J. Kutzler, "Application of Electronics to Air-
craft Flight Control," Trans. AIEE, Vol. 63, Nov. 1944, pp. 849-853.
See also W. H. Gille and H. T. Sparrow, "Electronic Autopilot Circuits,"
Electronics Oct. 1944, pp. 110-117.

1C. M. Young, E. E. Lynch, and E. R. Boynton "Electrical Control in
Automatic Plots," Trans. AIEE, Vol. 63, Nov. 1944, pp. 939-943.



final stage of power amplification. At first the controls were merely

t trim knobs, one for each axis, but later a single-knob turn control wa

introduced. * This automatic pilot was notable for its light weight

(7.5 1b) so that it was suitable for installation in fighters and

light attack aircraft.

The Sperry Gyroscope Company also developed an electric automatic

pilot during the war, the A5. It had a number of novel features such as

altitude control, automatic elevator trim by means of an additional trim

tab servo, and, notably, equalizing circuits which provided for phase

advance of the servo actuating signals. The servos were electrohydraulic

units with force feedback. This was thought to be a desirable feature in

that., since control surface effectiveness and aerodynamic hinge moment

vary in much the same way with speed and altitude, the closed-loop

response with force feedback should tend to be invariant with flight

condition.t Early flight tests in a Fairchild 22 were encouraging.

Unfortunately, as it turned out in practice, the deleterious effect of

control cable friction made it extremely difficult to secure satisfac-

tory operation in the large aircraftpf such as the B-24E "Liberator,"

for which this automatic pilot was intended.

The Eclipse-Pioueer Division of the Bendix Corporation began work

on the "flux-gate" compass in 1939 and, about 1943, introduced automatic

heading control from the "flux-gate" compass in the all-electric P-i

(A-10) autopilot. This equipment obviated the very tiresome necessity

of frequently resetting the directional gyro by reference to the magnetic

compass. The P-i also featured a yaw rate gyro signal fed to the rudder,

autouatic synchronization so that it could be engaged in any attitude,

and a computed up-elevator signal in turns.

*H. R. Hopkin and R. W. Dunn, Theory and Development of Automatic
Pilots, 1937-1947, Royal Airc. Estab. Rept. I.A.P. 1459, Monograph
T.5.05, Aug- 1947.

IP. Halpert and O.E. Esval, "Electric Automatic Pilots for Aircraft,"
Trans. AIEE, Vol. 63, Nov. 1944, pp. 861 -866.

fB. Levine, "Discussion" of paper by P. Halpert and 0. E. Esval,
Trans. AIEE, Vol. 63, Nov. 1944, p. I5O1.
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Somewhat later considerable effort was expended in designing auto-

matic pilots specifically for fighter aircraft, and Lear, Incorporated,

Introduced the F-5 autonatic pilot about 1950. In the F-5 the problem

of supplying power amplification for the control surface positioning

servos was solved with ragnetic powder clutches. The use of-these units

eliminated much relatively heavy cquipment, such as electronic or rotat-

ing power amplifiers, and provided for high performance servomechanisms

in a compact and lightweight package. The gyroscopic references, how-

ever, were the conventional vertical and directional gyroscopes, and the

maneuvers which could be made under automatic control were limited by

the phenomenon of "gimbal lock." This problem was attacked by Westinghouset

and the Instrumentation Laboratory at the Massachusetts Inqtitute of

Technology, both of whom constructed laboratory models of fighter air-

plane all-attitude sensors using different kinds of single-degree-of-

freedom gyroscopes.

Improvements were also made in providing for guidance tie-ins.

Imediately after the war the Sperry Gyroscope Company brought out theI

A-12 automatic pilot and Bendix int'oduced the PB-iO.1.. Both of these

were equipped with approac.h couplers and the Bendix system had automatic

throttle controls for the control of airspeed on the approach to the

runway. In England the Smith's firm brought out the all-electric rate-rate

SEP-2 automatic pilot and approach coupler.

*J. Harper, "George Turns, Tiger," Flyinr Safe, Jan. 1956.
tC. R. Hanna, K. A. Oplinter, and G. R. Douglas, "Automatic Flight

Control System Using Rate Gyros for Unlimited Maneuvering," Electrical
Engineering, Vol. 73, No. 5, May 1954, pp. 443-448.

fiH. P. Whitaker, J. A. Gautraud, and S. A. Wingate, Flight Test
Evaluation of the MIT Automatic Control System for Aircraft, MIT
Instrumentation Lab. Rapt. R-55, 1953.

1p. Halpert, The A-12 Gyropilot, paper presented to the SAE, New
York, 13-15 Apr.8 

19W8 
, p

I1J. C. Owen, "Automatic Pilots," Electrical Engineer ing, Vol. 67,
No. 6, June 1948, pp. 551- 561.

P. A. Noxon, "Flight Path Control," Aeron. Eng. Rev., Vol. 7, No. 8,
Aug. 1948, pp. 36-45.

#F. W. Meredith, "The Modern Autopilot," J. Roy. Aeron. Soc., May 1949,
pp. 409- 428. See also W. H. Coulthard, Aircraft Instrument Design,
Pitman, 1952.
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All the eleients of a modern automatic pilot were now at hand, and

in 1947 the U. S. Air Force All-Weather Plying Division's C-54 "Robert E.

Lee," equipped with a Sperry automatic pilot and approach coupler and

Bendix throttle controls, made a dramatic demonstration of completely

automatic flight. Taking off from Stephenville, Newfoundland, cn the

evening of 21 September, it flew through the night across the Atlantic

and landed the next day at Brize-Norton in England. From the time the

brakes were released for the takeoff roll until the landing roU was

complete, no human hand touched the controls. Selection of course,

radio station, speed, flap setting, landing gear position, and the final

application of wheel brakes were all accomplished automatically from a

program stored on punched cards. The complete automation of aircraft.

flight seemed to be at hand. Inast* described the performance and the

prospects early in 1948.

While the development of automatic pilots up to 1950 had, in general,

been responsive to the needs of potential users, and while such features

as single-knob turn control, erection cutout, automatic trim, altitude

control, synchronizers, rate gyro feedbacks, compass tie-in, and approach

coupling served useful purposes in some applications, in any cases they

were introduced only as the technology became readily available and cer-

tainly not because they were required for any particular airplane. The

automatic pilot was almost universally regarded as a useiul but hardly

an essential item of equipment, and the day had not yet drived when an

automatic pilot would be designed for a specific airplane by taking into

account, right from the beginning, particular and peculiar features of

the mission of the airplane and of the design of its control system.

Perhaps because of the obvious necessity for a special design of the

flight control system in a missile and the successes which were achieved

with that approach, and certainly further, in part, because the postwar

generation of jet airplanes almost invariably needed some form of stability

augmentation whose particular nature was often dictated by the unique

configuration or mission of the vehicle, the most comnmon design practice

later came to be based on a careful enumeration of requirements to be met

*J. L. Anast, "Automatic Aircraft Control," Aeron. lYng. Rev., Vol. 7,
No. 7, July 1948.
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and fwnctions to be performed by each syste. Ihis alteration in the

methods of design was only one of several vhih together radical y

changed the nature of work in automatic flight control.

1.6 113 JOIZnG OF COETRL T EMI OGA iD DI3WI=Q AIAYI2B

While the mathematical tools for performing analyses of automatic

flight control systems for aircraft had existed in at least a rudimentary

form before the war of 1939-1945, there has been occasion to remark that

they did not seem to be much used. The work of Gates, Garner, and Cowley

seems to have been nearly forgotten. Oppeltt even though translated into

English, does not seem to have attracted much attention, while Minorsky's

paper t on the steering of ships w.s fairly widely known but: did not seem

to inspire other workers to follow similar lines. There had appeared,

here and there, papers or monographs on the theory of servomechanismss

the regulation of prime movers,"1 process control, # the dynamics of

*See footnotes, pp. 1-36-1-37.
tW. Oppelt, Comparison of Automatic Control Systems NACA TM 966,

Feb. 1941.
1N. Minorsky, "Directional Stability of Automatically Steered Bodies,"

J. Amer. Soc. of Naval Eng., Vol. 34, 1922, pp. 280-309.

1H. L. Hazen "Theory of Servomechanimns," J. Franklin Inst., Vol. 218,
No. 3, Sept. 1934, pp. 279-3311 also "Design and Test of a High Perform-
and Servomechanisms," J. Franklin Inst.. Vol. 218, No. 5, Nov. 1934,
pp. 543-580.

IA. Stodola Steam and Gas Turbines, translated from German 6th ed.
by C. L. Loewenstein, Vol. I, McGraw-Hill Book Co., New York, 1927.

W. Trinks, Governors and the Governing of Prime Movers Van Nostrand
Co., New York, 1919.

H. K. Weiss, "Constant Speed Control Theory," J. Aeron. Sci.- Vol. 6,
No. 4, Feb. 1939, pp. 147-152.

#G. Wiinsch, Regler fUr Druck und Menge R. Oldenbourg, Munich, 1930.

A. Ivanoff, "Theoretical Foundations of the Autonatic Regulation of
Temperature," J. Inst. of Fuel (London), Feb. 1934.

S. D. Mitereff, "Principles Underlying the Rational Solution of Auto-
matic Control Problems," Trans. ASME, Vol. 57, No. 4, May 1935, pp. 159-163.

E. S. Smith, Jr., "Automatic Regulators, Their Theory and Application,"
Trans. ASME, Vol. 9, No. 4, May 1936, pp. 159-1631 also Automatic Control
Engineering, McGraw-Hill Book Co., New Yorks 1944.

A. Callender, D. R. Hartree, and A. Porter, "Time Lag in a Control
System," Phil. Trans. Roy. Soc. London Vol. 235A, 1936, pp. 415-444.

C. E. Mason and G. A. Philbrick, "Automatic Control in the Presence
of Process Lags," Trans. ASME, Vol. 62, 1940, pp. 295-308.
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nsz~mnts," and the Cauey/3isavisde ctpeantiwl eslcu1s apolied to

the muic reponse of airczuft, but malrat3y the need to study the
feedback control of aircraft for practical reasons was not yet felt.

The subject of the theory of automatic control of Lircraft did

receive some attention in the universities, technical institutes, and

research laboratories, however. Longitudinal stability of an airplane

under the action of a control system of the Sperry A2 or A3 automtic

pilot type was investigated by Klemin, 1-apper, and WittnerI at New York

University, and H. K. Weiss o at MIT performed a comprehensive study of

the stability of an autonatically controlled airplane, including both

the free longitudinal and lateral motions and the response to gusts, aa

his thesis research for the Master's degree. There was also a very

original contribution from Imlayl who explored the problem of selecting

"optimum" gearings, but all this barely carried the matter further than

the state in which it had been left by the British authors nearly 15 years

before. The difficulty, as Weiss pointed out, lay in the necessity for

*C. S. Draper and G. V. Schliestett, "General Principles of Instru-
ment Analysis," Instruments, Vol. 12, No. 5, MAy 1939, PP. 137-142.

C. S. Draper and G. P. Bentley, "Design Factors Controlling the
Dynamic Performance of Instruments," Trans. ASME, Vol. 62, No. 5,
July 1940, pp. 421 -432.

tL. W. Bryant and D. H. Williams, The Application of the Method of

.Oerators to the Calculation of the Disturbed Motion of an Airplane,
A.R.C. R&M 1346, July 1930.

R. T. Jones, A Simplified Application of the Method of Operators
to the Calculation of the Disturbed Motion of an Airplane, NACA ,TF 5160,
1936; see also "Calculation of the Motion of an Airplat.e Under the
Influence of Irregular Disturbances," J. Aeron. Sci., Vol. 3, No. 12,
Oct. 1936, pp. 419-425.

A. Klemin and B. F. Ruffner, "Operator Solutions in Airplane-
Dynamics," J. Aeron. Sci., Vol. 3, No. 7, May. 1936, pp. 252-255.

'A. Klemin, P. A. Pepper, and H. A. Wittner, Longitudinal Stability
in Relation to the Use of an Automatic Pilot, NACA TN 666, Sept. 1938.

1H. K. Weiss, Theory of Automatic Control of Airplanes, NACA TN 700,
Apr. 1939.

F.. Imlay, A Theoretical Study of lateral Stability with an

Automatic Pilot, NACA TR 693, 1940.
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fatoring characteristic functions of the fifth, sixth, and seventh

degree. The same problem, of course, plagued students of other feedback

control devices, and a considerable effort was made to find convenient

methods for accomplishing the tedious algebra.*

In 1944, discussing the subject of automatic flight and airplane

stability (which he treated separLtely), Zandt still found the situation

very unsatisfactory. He wrote, "... a thorough knowledge of the stability

of the airplane is a prerequisite toward the successful solution of the

problem of automatic flight. We have sketched the difficult path which

led airpane designers toward the understanding of fundamentals of

dynamic stability. An equally thorny road full of obstacles has been

conquered by the instrument engineer who succeeded against such odds as

space and weight limitations, lack of power, etc.. .... In many instances

the airplane engineering field and the instrument engineering fraternity

have worked independently on the problem which concerns both branches

directly. Pooling the knowledge of dynamic stability with the knowledge

of instrument design for the general betterment of aeronautics is essen-

tial.... Experience has showm that if the matching is performed theore-

tically first the number of experimental flying hours will be reduced to

a minimum and he results obtained superior." Indeed, the theoretical

matching of the two subjects was shortly to become not merely a

desideratum but an absolute necessity.

The var had seen the advent, on both sides, of the turbojet engine,

so that suddenly the limits of the flight envelope were en,)rmously

Y. J. Liu, Servomechanisms, Charts for Find4 .ig Their Stability and
for Finding the Roots of Their Third and Fourth Degree Characteristic
Equations, Dept. of Electrical Eng., MIT, Oct. 1941.

Shi-Nge Lin, "Method of Successive Approximations of Evaluating the
Real and Complex Roots of Cubic and Higher Order Equations," J. Math.
and Phys., Vol. 20, Aug. 1941., pp. 231 -242.

A. Porter and C. Mack, "New Methods for the Numerical Solution of
Algebraic Equations," Phil. Mag., Vol. 40, No. 304, may 1949, pp. 578-585.

H. R. Hopkin, Routine Computing Methods for Stability and Response
Investigations on Linear Systems, A.R.C. R &M 2392, Aug. 1946.

tS. J. Zand, "Automatic Flight and Airplane Stability," Aviation,

Vol. 43, No. 6, June 1944, pp. 14o-141, 290-296.

1-51



extended in both speed and altitude, with concomitant confipration

chanpes involving increased wing loadings, mass distributons cicen-

trateti in long thin fuselages, and the aerodynamic benefits of short

span, swept wings. These things, taken togetl.er, led to a marked

defeut In the damping of the longitudinal short-period and dutch roll

oscillations in the airplanes of the immediate postwar period. However,

it was not only the "classical" modes which were deficient in stability,

previously unknown coupled modes made their appearance. Among these were

fuel slosh* and the rolling instability!t Furthermore, thinner wings andJ

finer fuselages combined with advances in materials and manufacturing

processes made for increased structural flexibility. Power-boosted

controls had also come into use to handle the large hinge moments of,

the control surfaces. Early 1'jdraulic power units had stability diffi-

culties of their own, I and the inevitable lag was inimical to the

stability of automatic flight control systems. All these trends were

bad news for the automatic flight control system designer, who now

desperately wanted analytical help.

The intimate joining of control technology and vehicle dynamic

analysis which would, no doubt, have come about in any event, was forced,

*A. Schy, A Theoretical Analysis of the Effects of Fuel Motion on
Airplane Dlnamics, NACA Rept. 1080, 1952.

H. Luskin and E. Lapin, "An Analytical Approach to the Fuel Sloshing
and Buffeting Problems of Aircraft," J. Aero. Sci., Vol. 19, No. 4,
Apr. 1952, pp. 217-228.

IF. D. Graham and R. C. Uddenberg, The Dynamic Stability and Control

Problem of a Pivoted-Wing Supersonic Pilotless Aircraft, Boeing Airplane
Co., Document D-8810, Feb. 1948

W. H. Phillips, Effect of Steady Rolling on Longitudinal and
Directional Stability, NACA TN 1627, June 1948.

ID. J. Lyons, "Present Thoughts on the Use of Powered Flying Controls
in Aircraft," J. Roy. Aeron. Soc.. Mar. 1949, pp. 253-277.

T. A. Feeney, "Powered Control System Design Practice at Northrop
Aircraft," Proc. of the BuAer Syposium on Analysis and Design of Power
Boosted and Power Operated Surface Control Systems, 6-7 Oct. 19i9

'D. T. McRuer, "An Analysis of Northrop Aircraft Powered Flight
Controls," ibid.
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by Ie marked eficiencies in stability of the new jet aircraft and

also by the advent of the sided missile where it vas obvionsly essential

to match the dynamics of the airframe and the control system from the

first flight on.* One of the first children of the marriage was the

"stability augnenter," a feedback control designed to modify the inherent

aerodynamic stability of the airframej "augmenIing" one or more of the

stability derivatives by imposing forces or moments through actuation

of the controls in response to motion variables. Thus, in short order,

there were invented or reinvented the:

0 Yaw damper

* Sideslip stability aupmenter

0 Pitch damper

* Roll damper

0 Transonic trim shifter

0 Autothrottle

and other devices. Since both the problem and the solution were

inevitably connected with a particular aircraft and its control system,

the old methods of designing general purpose equipment were totally

inadequate. Extensive analysis and simulation for each application

to a piloted aircraft or missile was found to be required.

In the interim, wartime pressures for very high performance servo-

mechanisms and regulators for such uses as servo-controlled aircraft

wing spar milling machines. t process controls in the manufacture of

fissionable material)+ and particularly for fire control and navigation

*While it seems surprising that the developers of the V-2 were able
to make do with stability diagrams and a rudimentary simulator, they did
not entirely neglect analysis in the design of the control and guidance
equip nent. The frequency response method and Nyquist stability criterion
were known but were not "popular." See 0. Miller, "The Control System of
the V-2," in T. Benecke and A. W. Quick, eds., History of German Guided
Missile Development. Verlag E. Appelhans and Co., Brunswick, Germany,
1959.

tElectronics, Oct. 1944.

+H. Smyth, Atomic Energy for Military Purposes, Sections 7 and 27
and Appendix 4, Princeton University Press, 1945.
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oeyatws, as wll au mt dlives for tracrng i's, t had led to
as vldeis.eI adoption of ana1,tical desin temuiques originy devel-

aped for long distnc telephone ampliflers.'o While Jmes, Nichols, and

ftillips credit John F. Taplin, at MIT, with working with frequency
response techniques for servomechanisms as early as 193r. substantially

nothing concerning the matter appeared in public print until after the

war was over. It seems clear that the same or very similar ideas were

shared by widely separated investigators. At both the Bell Telephone

Laboratories and MIT classified memoranda were prepared on the eve of

the United States' involvement. I As far as the present authors know,

these historic documents have still not been seen in the light of day.

*. A. Greenwood, Jr., J. V. Holdam, Jr., and D. MacRae, Jr.,
Electronic Instrmnents McGraw-Hill Book Co., New York, 1948.

tH. M. James, N. B. Nichols, and R. S. Phillips, Theory of Servo-

mechanisms McGraw-Hill Book Co., New York, 1947.

tH. Nyquist, "Regeneration Theory," Bell Systems Tech. J.. Vol. I1,
NO* 1, Jan. 1932, pp. 126-1473 see also "The Regeneration Theory,"
Trans. ASME, Vol. 76, No. 8, Nov. 1954, p. 1151.

H. S. Black, "Stabilized Feedback Amplifiers," Rell System Tech. J.,
Vol. 13, No. 1, Jan. 1934, pp. 1-18 see also U.S. Patent No. 2,102671,
Dec. 1937.

E. Peterson; J. G. Kreer, and L. A. Ware, "Regentration Theory
and Experiment," Bell System Tech. J. Vol. 13, No. 10, Oct. 1934,
pp. 680-TOO.

H. W. Bode, Amplifiers, U.S. Patent No. 2,123, 17 , 12 July 1938
see also "Relations Between Attenuation and Phase in Feedback Amplifier
Design," Bell System Tech. J., Vol. 19, No. 3j July 1940, pp. 421 -454j
Network Analysis and Feedback Amplifier Design, Van Nostrand Co., New
York, 1941i and "Feedback- The History of an Idea," in Active Net-
works and Feedback Systems, Polytechnic Press, Brooklyn, New York,
1961. 1

ID. C. Bamberger and B. T. Weber, Stabilization of Servomechanisms
Bell Telephone Laboratories Restricted Publication M.M.- 1 1I0152,
Dec. 10, 1941.

H. Harris, Jr., The Analysis and Design of Servomechanisms ORD,
NDRC (Sec. D-2), Rept. 454, Jan. 19412. (Brown and Campbell give the
date of this report as Dec. 1941, but other authorities agree on the
one given here.)
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r later', at WT, Bar* prcpared a dissertation which wes Initially classified*
but which ws reloased In 19117. The effort to keep a3.1 this information
classified probabl.y did more harm than good. Certainly it did not prevent

the duplicate development and use of the Ideas on several sides. Almost
simutaneus,y vrith Hall's dissertation, Prof ost contributed his own at

barich, while only a little later the book which we know in translation

as The Dymuics of Automatic Control *vas published in Muich. The

system vasn t t even airtight on our own side.* The earliest published work

In English which makes reference to the frequency response method in con-
trol seems to have been the 194. paper by Prinz.

Immediately upon the cessation of hostilities there appeared a rash
or papers by the original contributors, and others, who had been kept

silent for more thar five years. Almost simultaneously with the papers

*A. C. Hall, The Analysis and Synthesis of Linear Servomechanisms,
Technology Press, Cambridge, Mass., 1943.

'P Profos, Die Bebandlwngn von Regel Problemen venittels des
Freguenzgang esRekris, Ph.D. Dissertation, A. G. Gebr. Leeman
and Co., Zurich, 1943; alo'ANwMethod of' Regulating System Design,"
Sulzer Tech. Rev., No. 2, 19145.

tR. C. Oldenbourg, and H. Sartorius, Dynaniik Selbsttitiger Regelu~
R. Oldenbourg, NMich, 1944; see also The Dynamics of Automatic Control,
ASME, New York, 1918.

D. 0. Prinz, "Contributions to the Theory or Automatic Controllers
and Followers," J. Sci. Instr. (London), 'Vol. 21, No. 4, Apr. 1914,
pp. 5.3- 6.

*D. P. Ca~mpbell, "Theory or Automtic Control Systems," Industrial
Aviation, Sept. 1914%5 pp. 62-64., 914p, 95.

E. j. Fer' ell, "The Servo Problem as a Transmission Problem,"
Proc. IRE, Vol. 33, No. 11, Nov. 1945, pp. 763 -767.

G. 5. Brown and A. C. Hall, "Dynamic Behavior and Design of Servo-
mechanisms," Trans. ASME, vol. 68, 1946, pp. 503-524.

A. C. Hall, "Application of Circuit T~heory to Design of Servomecha-
nisms," J. Franklin Inst., Vol. 214.2, No. 4, Oct. 1946, pp 279- 307; see
also "Early -History of the Frequency Response Field," Trans. ASME,
Vol. 76, No. 8, Nov. 1954, pp. 1153-1154.

H. Harris," Jr., "Frequency Response of AutonrAtic Control Systems,"
TranA. AIEE, Vol. 65, 1946, pp. 539 -545.

Re E. Graham, "Linear Servo Theory," Bell System Tech. J. , Vol. 25,
No. 14. Oct. 1946, pp. 616-651.

L. T. Marcy, "Parallel Circuits in ServomechanismsL," Trans. AIEE,
Vol. 65, 1946, pp. 521 - 529.

1-55



there also bepm to appear a groud nuber of books, mny of vhich are
almost as valable today as when they were first published.* Typical,
these books not only expounded the new theory of the frequency response

of automatic control systems, but further connected it to the perform-

ance in the time domain vi the correspondence between the transfer func-

tion and the transient response as revealed by the Iaplace transform

method. Operational techniques were not new, but theitr rigorous and

respectable foundation in the laplace transformation vas, at that time,

a comparatively recent development.
t

There also appeared, inmediately after the war, accounts of the

improved mechanical analog computer developed at NIT and of the digital

*Lo -A. McColl, Fundamental Theory of Servomechanisms, Van Nostrand Co.,

New York, 1945.

H. Lauer, R. Lesnick, and L. E. Matson, Servomechanism Fundamentals,
McGraw-Hill Book Co., New York, 1947.

H. M. James, N. B. Nichols, and R. S. Phillips, Theory of Servo-
mechanisms, McGraw-Hill Book Co., New York, 1947.

W. It. Ahrendt and J. F. Taplin, Automatic Regulation, Vol. I,
Ahrendt and Taplin, P.O. Box 4673, Wash., D. C., 1947.

I. A. Greenwood, Jr., J. V. Holdam, Jr., and D. MacRae, Jr.,
Electronic Instruments, McGraw-Hill Book Co., New York, 1948.

G. S. Brown and D. P. Campbell, Principles of Servomechanisms,
John Wiley and Sons, New York, 1948.

tG. Doetsch, Theorie und Anwendung der laplace Transformation,

Springer-Verlag, Berlin, 1937.

N. W. Maclachlan, Complex Variable and Operational Calculus,
Cambridge University Press, London, 1939.

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied
Mathematics, Clarendon Press, Oxford, 1941.

M. F. Gardner and J. L. Barnes, Transients in Linear Systems, Vol. I,
John Wiley and Sons, New '1, rk, 1942.

R. V. Churchill, Modern Operational Mathematics in Engineering,
McGraw-Hill Book Co., New York, 1944.

IV. Bush and S. H. Caldwell, "A New Type of Differential Aralyzer,"
J. Franklin Inst., Vol. 240, No. 4, Oct. 1945, pp. 255-3-6.

1-56



scientific calcuiators developed at hrvard University,* at the Bell

Telephone aboratories,t and at the University of iennsylvania. These

machines had originally been employed primarily to compute ballistic

tables, but their potentialities for the solution of other problems,

including the design of feedback control systems for aircraft, was quite

plain. Furthermore, requirements for fire control computers had led to

the development of a variety of new or improved components. Among these

vas the d-c or operational amplifier. In a prophetic paper published in

1947, Ragazzini, Randall, and Russell ! pointed out that these might be

used in a general-purpose machine for solving differential equations, An

electronic analog computer. A number of firms almost immediately developed

such machines for sale or their own use, and by 1950 they were fairly common.

Several universities also developed their own machines. Among the first

was the University of Michigan. In an early report il on the feasibility

of electronic analog computation, autopilot control of the longitudinal

motion of an airplane was given as one of the illustrative examples.

Knowledge of the development of the new methods of analysis and of

the newly available computers spread very rapidly, and one could almost

*H. H. Aiken and G. M. Hopper, "The Automatic Sequence Controlled
Calculator- I," Elec. Eng., Vol. 65, No. 8-9, Aug.-Sept. 1946, pp. 384-391;
"The Automatic Sequence Controlled Calculator - II," Elec. Eng., Vol. 65,
No. 10, Oct. 1946, pp. 449-454; "The Automatic Sequence Controlled
Calculator - III," Elec. Eng., Vol. 65, No. 11 , Nov. 1946, pp. 522 -528.

tF. L. Alt, "A Bell Telephone laboratories Computing Machine - I,"

Math. Tables and Other Aids to Compuation, Vol. 3, No. 21, Jan. 1948,
PP. 1 -13; "A Bell Telephone laboratories Computing Machine - II," Math.
Tables and Other Aids to Computation, Vol. 3, No. 22, Apr. 1948,
pp. 69- 84.

1H. H. Goldstine and A. Goldstinr, "The Electronic Numerical Inte-

grator and Computer (ENIAC)," Math. Tables and Other Aids to Computation,
Vol. 2, No. 15, July 1946, pp. 97-110.

IJ. R. Ragazzini, R. H. Randall, and F. A. Russell, "Analysis of

Problems in Dynamics by Electronic Circuits," Proc. IRE, Vol. 35, No. 5,

May 1947, pp. 442-452.

1ID. W. Hagelbarger, C. E. Howe, and R. M. Howe, Investigation of the

Utility of an Electronic Analog Computer in Engineering Problems,
External Memo. 28, Eng. Res. Inst., Univ. of Mich., Ann Arbor, Mich.,
1 Apr. 1949.

1
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~Py that a ne brnch of the engineering profteson cam suden4 Into

being: )en were proud to call themelves a feedback systems engineer,
or "systems engineer" for sb .rt, and not a few of these became aircraft

control system engineers. Application of the frequency response (or

transfer function) technique to the design of aircraft and their control

systems was pointed out earl., and it quickly became a part of the design

process for actual aircraft (or missile) control systems.t

Further improvements and extensions to the analytical techniques

were also discovered. By no means the least of these, Evans' locus of

roots method was inspired by consideration of the problems of aircraft

and missile flight control. In the classic Fourteenth Wright Brothers

Lecture for the year 1950, Bollay summrized the then existing state of

the art and pointed to the use of the Laplace tra.sformation, frequenwy

response techniques, the Nyquist stability criterion, the root locus

*W. F. Milliken, Jr., "Progress in Dynamic Stability and Control
Research," J. Aeron. Sci., Vol. 14, No. 9, Sept. 1947, pp. 493-519.

J. B. Rea, Automtic Tracking Control of Aircraft, Sc.D. Thesis,
Mass. Institute of Technology, 1947.

H. Greenberg, Frequency-Response Method for Determination of Dynamic
Stability Characteristics of Airplanes with Automatic Controls, NACA
TN 1229, Mar. 1947.

R. C. Seamans, Jr., B. G. Bromberg, and L. E. Payne, "Application
of the Performance Operator to Aircraft Automatic Control," J. Aeron. Sci.,
Vol. 15, No. 9, Sept. 1948, pp. 535-555.

J. R. Moore, "Application of Servo Systems to Aircraft," Aeron. Eng.
Rev., Vol. 8, No. 1, Jan. 1949, pp. 32-43, 71.

C. L. Seacord, "Application of Frequency Response Analysis to Air-
craft Autopilot Stability," J. Aeron. Sci., Vol. 17, No. 8, Aug. 1950,
pp.481 - 498.

tp. A. Noxon, "Flight Path Control," Aeron. Eng. Rev., Vol. 17, No, 8,

Aug. 1948, pp. 38-45.

R. J. White, "Investigation of Lateral Dynamic Stability in the XB-47,"
Airplane," J. Aeron. Sci., Vol. 17, No. 3, Mar. 1950, pp. 133-148.

1W. R. Evans, Servo Analysis by.,Locus of Roots Method, North Amer.
Aviation, Inc., Rept. AL-787, Nov. 1, 1948; "Graphical Analysis of Con-
trol. Systems," Trans. AIEE, Vol. 67, 1948, pp. 547-551; "Control System
Synthesis by the Root Locus Method," Trans. AIEE, Vol. 69, 1950, pp. 66-69;
"The Use of Zeros and Poles for Frequency Response or Transient Response,"
Trans. ASME, Vol. 76, No. 8, Nov. 1954, pp. 1335-1342; Control System
Dynmic, McGraw-Hill Book Co., New York, 1954.

1-58



I t

method, analog computers, and other tools of the systems engineer in
the design departments of the major aircraft manufacturers.

At Northrop Aircraft, Inc., based in part on the experiences

gained with the power controls and stability augmentation system

developments needed for taillesst and other advanced designs, and

in a comprehensive study of the F-5 automatic pilot for the F-89A

aireraft, + an attempt was made to summarize the most useful aspects

of the new knowledge of aircraft control system engineering in a series

of seven volumes, prepared for the U. S. Navy Bureau of Aeronautics. 1

These volumes began to appear in March 1952. The genealogy of the

present work can be traced directly to several of the "Northrop Volumes."

In fact, it began, some ten years after the initial summary, as an effort

to revise and update Volumes II and VI and to provide between a single

pair of covers a comprehensive account of the theory and application of

analytical techniques in the design of automatic flight control systems.

*W. Bollay, "Aerodynamic Stability and Automatic Control," J. Aeron.
Sci.. Vol. 18, No. 9, Sept. 1951, pp. 569-624.

tD. T. McRuer, "An Electronic Tail for the Flying Wing," Flight
Lines Nov. 1950.

+Analysis Final Report: Analysis of Type F-5 Automatic Pilot Applied

to the Type F-89 Aircraft and Control System. Northrop Aircraft, Inc.,
Servomechanisms and Dynamics Section, Rept. SMD-3, 13 Sept. 1950.

1Fundamentals of Design of Pilot Aircraft Flight Control Systems
BuAer Rept. AE-61-4i Vol. I, Methods of Analysis and Synthesis of
Piloted Aircraft Flight Control S)ntems, Mar. 19521 Vol. II, Dynamics
of the Airframe. Sept. 1952,: Vol. III, The human Pilot, Aug. 195W,-
Vol. IV, The Hydraulic Syste' Mar. 1953j Vol. V, The Artificial Feel
Sst1m. May 19531 Vol. VI, Automatic Flight Control Systems for Piloted
Aircraft, Apr. 1956 Vol. VII, Methods of Design and Evaluation of
Ynterceptor Fire Control Systems, Oct. 1959. -,

Available at cost from Northrop Corporation, Specifications and
Data Department, 1001 East Broadway, Hawthorne, California.
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2.1 IMN0UCTION

A major task in systems analysis is the estimation of system response

to commands or disturbances. The most concrete way to determine behavior

is to test the actual system. This direct experimental approach is

precluded in the early phases of design, when the "system" may be but one

of a number of competing possibilities, or when the physical system may be

unavailable. Fortunately, many of the potential results of actual physi-

cal meacurements can be foreseen by performing "experiments" utilizing

various models of the system.

As the underlying basis for system models, consider the block diagram

representation of Fig. 2-1. The input, stimulus, command, disturbance, or

forcing function elicits an output or
Input Output response from the "system." The "system"

x-.- Syste y might be one of a very large number of

(Cause) (Effect) things including a human being, an air-

Fig. 2-I. A Pattern plane, or a society, and the words

appropriate to the several portions of

the diagram of Fig. 2-I are quite different in these different contexts.

Nevertheless, it is assumed here that we are dealing with cause and effect

elements, perhaps combined into larger systems; and that an input and out-

put of a particular element can always be identified. It is further

assumed that ';he relationship between the input and output can be repre-

sented by one or more ordinary differential equations. These equations

become the mathematical attorneys for the physical elements or systems,

and it is through them as intermediaries that the transactions in which

we are to engage will ordinarily be conducted.

Many physical elements and systems are practically linear and

time-invariant; that is, they can be described adequately over a limited

range by linear differential equations with constant coefficients.
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* aExamples of linearization abound in the literaturc,* and Chapter 4

presents an example of the assumptions and techniques which are employed,

in this case, to linearize the equations of motion of an aircraft. It

can be demonstrated that feedback control itself has the property of

linearizing the performance of the systems or elements to which it is

applied, t so that while all systems and elements are in fact nonlinear,

the assumptions of our analyses are often not so restrictive as they may

at first appear.

Proceeding on the assumption, for the moment, that we need only be

concerned with systems which are linear with constant coefficients, or

which my legitimately be linearized, we shall introduce in this chapter

the powerful and convenient concepts of the Laplace transformation. The

rudiments of response calculations are first reviewed, including approxi-

mate calculations and modal response ratios. Following this is a discus-

sion of the system descriptors- the weighting function or impulse response

and its transform, and the transfer function. Graphical representations

for both these functions are emphasized: time vectors for the weighting

function, and pole-zero plots, jo)-Bode diagrams, and a-Bode diagrams for

the transfer function.

2.2 )APIAE T FOPMTION

The system of Fig. 2-1 is, according to our assumptions, described

by the equation

d + b dtm+n- + "'" + b d+n-1 Ut- +  bi4 n)

d -+n dm+n bm-

=K; + al-1 d + .. + an. d +- + (2-1)
tdn n-1 d- It- ~ t

*D. Graham and D. McRuer, Analysis of Nonlinear Control Systems,

John Wiley and Sons, Inc., New York, 1961, pp. 9-12, 445 -454.

R. W. Jones, "Stability Criteria for Certain Non-linear Systems,"
in A. Tustin, ed., Automtic and Manual Control, Buttcrworths Scientific
Publications, London, 191)2, pp. 319- 324.

tJ. C. West, Analytical Techniques for Non-linear Control Systems,

English Universities Press, Ltd., London, 1960, pp. 16-23.
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For any physical system, m ; I. We are interested in discovering certain

aspects of the performance of the system, such as the stability, accuracy,

and speed of response of the output for certain inputs. The analysis

problem is defined as follows: Given the input and the differential

equation, find the output. If the analysis problem were solved for all

the inputs to which the system might be subjected rind these solutions

were tabulated as input-response pairs, the analyst would have a complete

description of the performnce of the system. Very luckily this turns

out to be unnecessary for linear systems.

In modern engineering analysis an equation such as Eq. 2-1 is most

often solved, if it has to be, by a digital or an analog computer. On

the other hand, a great deal of inforiration concerning the nature of the

solutions for a variety of inputs can be found without solving the equa-

tion itself. The techniques which are commonly employed, hnowever, are

intimately related to the method of solving Eq. 2-1 by means of the

laplace transfornntion.

The laplace tiunsfonration of a function of time is defined as

L[f(t)] = F(s) = Tira fT 2 f(t)e s t dt -2)T2(2-2
T1 --- 0

where s is the complex variable s = a+jw. Application of the definition

allows the construction of tables of the transforms of operations, such as

differentiation and integration, and tables uf the transforms of functions,

such as an impulse or a sine wave. The inverse teensforration [i.e., c-t),
given F(s)] is usually carried out by finding the appropriate pair in a

table so arranged that f(t) can be associated with a particular F(s).

The most interesting and useful properties of the laplace transform-

tion are summarized (without proof) in Table 2-1 .*

*For rore details on the properties of the transformation and its

ur-ss, see for example: M. F. Gardner aid J. L. Barnes, Transients in
Yinear Systerms, John Wiley, N. Y., 1942; J. A. Aseltine, Transform
Method in Linear System Analysis, McGraw-Hill, N. Y., 1958; R. V. Churchill,
Operatiomil M thevtics, ?nd ed., McGraw-Hill Book Co., N. Y., 1958;
W. Kaplan, Operational- Ithods for Linear S yste .s, AeIison-Wesley, Reading,
Msn., 1962; G. Dotsch, Guide to the Applict.tions o Inplace Tronsforms,
Van Nostrand, lJndoi,, 1961.
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Common transform pairs for the time functions which occur in the

analysis and testing of feedback control systems are cataloged in the

short illustrated table of transform pairs presented in Table 2-2.* It

nay be noted that in many cases two alternative forms are given for the

transform. In some problems one form is more suitable than the other,

so they are used interchangeably as convenience my dictate. To emphasize

the physical interpretations of the f(t)-F(s) dichotomy, graphical

representations of f(t) are given as an integral part of the table. A

knowledge of the d!tails of these time histories enables the analyst to

picture, either mentally or by a sketch, the behavior of a system element

characterized by a given F(s) or f(t).

It is also necessary to point out that the integral which defines

the laplace transformation may fail to converge. For transformable

functions this sitiation is avoided by defining an abscissa of absolute

convergence, ca, which is set just large enough to assure the convergence

of the transform integral. This is the minimum value which the real part

of the complex variable s = a + J0 my take. In the case of a function,

such as f(t) = tt , no value of ea can be found which will assure conver-

gence of the integral. The function is then said to be not aplace

transformable.

9. 3 DBSPO E D~MUMM.ION

When the definition of the transform for the operation of differen-

tiation is applied to Eq. 2-1, if it is assumed that all initial conditions

*A table of transform pairs of particular value for vehicular control
problems is S. Neumark's Operational Formulae for Response Calculations,
ARC Tech. Rept. R&M 3075, Her Majesty's Statio-Ary Office, London, 1958.
This report comprehensively treats operational rractions of the first,
second, third, and fourth order and has additional tables on the reduction
of every fraction of fifth or sixth order to a combination of fractions
of lower order. Other useful tables of transform pairs are the references
on the aplace transformation and its uses cited previously and:

F. E. Nixon, Principles of Automatic Controls, Prentice-Hall, Inc.,
New York, 1953., The same table has also been published separately as
Handbook of aplace Transformations, Prentice-Hall, Inc., New York, 1960.

A. Erddlyi,\ F. Oberhettinger, and F. G. Tricomi, Tables of Integral
Transforms, Vol. I, McGraw-Hill Book Co., Inc., New York, 1954.
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TA111P 2-2

COW.ON TRAO]SFORIO-I10.I PAIR6 :iD PROPERI'ES OP THEIR TIME RESPONSE

F(s) f (1) TIME RESPONSE PROPERTIES

UNIT f t) Limw -- O
IMPULSE 8(t)

11"
f~t)Lira w--1- 0

UNITo5 't
DOUBLET f

STEP
FUNCTION / I or ut) f(t)
POSITION

STEP
FUNCTION t f(t)
VELOCITY 2

STEP 2  1(t)

FUNCTION 2
ACCELERATION /

n f(t)
nth ORDER n(t)

STEP Stn--

FUNCTION 
1/

I 2 3 t
-H -

I/n 2/n 3/n

PURE ft-:r (t)
TIME ersF(s) Where.

DELAY f(t- -)aOt r" r"
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Table 2-2 (Cc'nt:-Inued)

F(s) f (t) TIME RESPONSE PROPERTIES

FIRST 0

ORDER LAG ea...367
CONVERGING 4

O~u 1_____ 09 .0183

FIRST I(T 1.0-----------------------------021
ORDER LAG sT.) IeI 90

CONVERGING or 62

ond -a- a
FIRST S(s +a)

ORDER POLE
AT ORIGIN 0

.TT 60 5.9
-Ts'+ It

FIRST o
ORDER LAG I_ eat 8
DIVERGING 1-

60
FIRST ItT5.9

ORDER LAG s(- Ts +1)

DIVERGING o

and -a ,4 *eat o.

FIRST Z7i-)

ORDER POLE CI .8
AT ORIGIN -4 ----

MULTIPLEPoint

FIRST -I In-. 0

ORDER (On (nI)

a T 2T 34T15T 6T ?T 8T
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Tabl~e 2-2 (ut1uJ

F(s) f (t) TIME RESPONSE PROPERTIES

S2 2

W2

"in

or 2it W2 v V

UNDAMPE D
SECOND--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ORDER
W.

S2

- +1
n

or Cos tail

I-1/03 P/2 r

\4]OP/v

CONVERGING s 4 2twns*w2  Sinl6. %Iet

SECOND ofro
ORDER Ie-alsinit

s .)+1 Where:

Orion
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Table 2-2 (Conicluded)

F(s) 11tW TIME RESPONSE PROPERTIES

*Ctn 2CI, i 2n Col.

CONVERGING c yap To F-tcs(t8 /2

SECOND (sa 2 +0 p1 p "cs.1
ORDER CdAwee

'

or po2

CONVERGING _ _ .~ i
SECOND a, 2  2+
ORDER sIs*),P2  cos(At - )

a 2 where.,I

.1

DIVERGING 1

SECOND a a -e sin O
ORDER (s-a')f + pt wK

X
P9/2.
po/2w k



are zero, the transfoned equation is:

'(Mn+ bjsm+ni + --- + b.,._ls + bm+n)Y(s)
K (Sn  + a+ n' -1  *.. + An_ + * an)x(s) (2-3)

1''
The laplace transformatio o has reduced the linear differential equation

with constant coefficients to an algebraic equation in the transform

variable, s. For any transformable input x(t), which has the transform

X(s), Eq. 2-3 may be solved for Y(s).

'-1

Y(s) = K an) X(s) (2-4)
(8m+n + bisBm+n1 + + bm-n-1 S + bm+n)

In principle,, then, the inverse tranformation yields y(t) = [y(s)].

3 e: The procedure can be illustrated with an elementary
example. 'Consider the (rotary) spring-mass-damper system of
Fig. 2-2. This device is the all-mechanical analog of a
simple servomechanism. The equation of motion, obtained by

K I

Fig. 2-2. Sprif-Mass-Damper System

aummng torques on the wheel, is:

~.~+ +Ky = Kx (2-5)

it this ordinary differential equation with constant coeffi-
K cients is Inp3ace transformed, it may be- written as:

K [is2 +,-a i--KY'l(s) 1x(G) 4. [Isy(O+,) 4. *~(+) + By(O+)] (2-6)
where y(O+) and (O+) are the initial conditions. Note that

the action of the initial conditions is equivalent to that

2-12



of an input made up of delta functions and higher order delta
functions. That is, Isy(O+) amounts to a doublet of weight
Iy(O+), while I(0+) 4nd By(O+) are equivalent to a delta func-
tion input with weight [Ir(O+) + ,By(O+)]. Solving for Y(s),

(. x(s) + sy(o,) + [o+) *+ y(o+)
Y(s) B K (2-7)s2 +-28 +-K8 +E +1

Lettingi(t) = 5(t), the unit impulse, so that X(s) = 1, set-
ting the initial conditions-to zero,, and defining an "undamped"
natural frequency," a = i4K/l, and a "damping ratio,"=B/C2VKI),

2
Y(s) = (2-8a)

s2 + 2tcus + 2
or

Y(s) = 1 (2-8b)

Inverse transformation of this function can be carried out by
recognizing that the right side of Eq. 2-8 is a pair in
Table 2-2 and that:

Y(t) O n _e - =n t sin _g" 2 t ; < 1 (2-)

-When the response transform has -ak more complex denominator, the

transform can be broken down into a sum of partial fractions before

inverse transforming. Suppose that the algebraic solution for the trans-

form of the response is given in the form

Y (S) K (sn +as n -1 + ... +an,_ I s +an) (2-10)

(B m~n + b1s m+n-l + *+ bm4n-ls + bm+r)

where m _ 1. The polynomials can be factored. Then,

n

Y(s) N1, K m+n - = K (2-11)

f (s + qi)
i1
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or-

Y(s) D K (- = s(2-12)

and the numerator and denominator roots, -zj and -qj, are respectively

called zeros and poles. For reasons which will, appear later, the first

style of the transform factors is called the root locus form and the

second style is called the Bode form. 'Both.-aie used extensively.

In principle, the right side of Eq. 2-11 or 2-12 can be refori niated

in a partial fraction expansion and elementary inverse. Inplace transform-

tions can then be carried out o&neach term. This yields the time response,

y(t).

Ymc) i (2-13)
•m +n qj

y(t) Cie [¢s)i = E 0 je ' it (2-14)

Thus, any response transform which is a ratio of rational polynomials with

real coefficients results in a time domin response which is a sum of real

or complex conjugate exponentials. The amount or mgnitude of each mode

which is present in the total response is indicated by the partial

fraction coefficient) Ci.

When the response transforms have either of the equivalent rational
proper fraction forms

Y(s) N = K s+ l)(s+q2) C1  C2 (2-15)
Y(S) D~s) -Ws+q 1  + i (-5

or

Ys) 1(i (T s + 1)(T 2 .I + .) T~c+1 T2 (+1

the coefficients Ci or dj may be evaluated as shown in. T.bl 2-3.
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TABLE,2-3

£ PARTIAL FAdTION COEFFICIEVYiS

FIRST-ORDER POLFS

General: The coefficient of the component involving 11(s+ q1 ) or

1f/(Ts +1 will be

[N(s)(s_ + qt N i(S)(Ti S + 1)
C1 D(s) I', s=q [ I D(S) i=-1 /T1

First-Order Pole it the Origin: For this case,

X(s) = *) or N1(s N(O) _Ni (0)
sD(s) ' sDl (s) CO (O) =D 1l(O)

First-Order Poles on the Imdinry Axis (at s = ±jaq): The inverse

transform of this -component of X(s) will, be

Re [N(1;w ) et] SRe' [s[ S2/ )I (s Ijt)

One ConJM~~te-CIrnplex Pair with N Real First-Order Poles:

NWa +18+ +,+... +as+a 0 N Cj As+B
DNs 1 0 - +

(S~j (s2bsc) =1 s+ qi S2 +bs+ c

iiarl I --- 2 -- C

N o C

HIGHlER ORUVH 'P03 .I.S i l
fl(a) wi.. cortain tctiiu. such as (s + q1 )m, and DI (s) will contain terms

suchl an ( 11., + 1 )l* The c~oefficients Cm..k and Cmk. for the components

1/s+ q1 )mk taid 1/(fTls + 1 )1uk of the X(s) exp'ansion, will be:

.i.il MI: s k s 1 /T1
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If the explicit differential equation which 'dcscrAbes the system is

of low order, the polynomials in the system transfer function are of the

same low degree. Then tbh tasi. vf factoring the polynomials and of find-

ing the ,partial fracti. , co oi'ficients can be carried out without diffi-

culty.* On the other hand, if the characteristic (denominator) polynomial

Is of the fourth degree or higher, the algebraic factoring of the poly-

nomial and the determination of the partial fraction coefficients may be

excessively tedious. It was partly to avoid most of the tedious labor

involved in the solution of the equations of motion of linear systems

that the semigraphical methods of linear feedback system analysis dis-

cussed in Chapter 3 were developed.

9.4 SZ3WL1 )MS= TO OVMA PP4Mf (t)

A zajor source of practical difficulty in solving linear constant-

coefficient differential equations arises in finding the time response,

f(t), after its transform, F(s), is known. This occurs because the poles

of F(s) must usually be found as a necessary preliminary to the part..al

fraction expansion or to entry into a transfona table. Factoring the

polynomials of F(s) to find its poles and zeros zybe more time consuming

than warranted. Therefore, schemes which avoid this operation, yet still

allow the extraction of spme information about the time rebuonse, f(t),

directly from its transform, F(s), are valuable techniques for many

applications.

In this section three ways are described to find information about a

time function, f(t), from its transform, F(s), in unfactored form. The

first two are fundamental properties of the laplace ,transformation, the

initial and final value theorems. Application of these properties gives

the values of f(t) at t =0 and as t - . In escence., these theorems

state an equality between two particular° values of f(t) and two particular

*Concise summaries of ;preferred methods appear in:

J. J. D'Azzo and C. R'. Houpis, Feedback Control.Syctem Analysis and
Synthesis, McGraw-Hill Book Co., Inc., New York, 1960 (Appendix B)

Y. H. Ku, Analysis and ,Control of Linear Systems, International
Textbook Co., Scranton, Pa., 1962, pp- 171 - II--
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values of its transform, F(S). The initial value theorem can also be

used to obtain the derivatives of the initial time response, thereby

permitting its expansion in a IJaclaurin series. The third method involves

the expansion of the response transform in a Yaclaurin seriesi, which has

a degree of validity in the steady state after transients have become

insignificant, or in cases where the input can be approxinated as a poweir.

series. This series is the basis of the error coefficients so valuable

in some phases of servo design.

The UItfAI Value Theorem. The initial value theorem is a basic

property of the Laplace transformation which allows the value of f(t) and

its derivatives at t =0 to be found from its transform, F(s). Specifically,

if f(t) and its first derivative have laplace transforms and the limit

as s -o-- of sF(s) exists, where F(s) is the transform of f(t), then

lim sF(s) - im f(t) (2-17)
s- t-1-O

For example, if F(s) =K/(s3 + as2 + bs + c), then

lim f(t) = lim Ks

t-0 s-,-P s3 + as + bs + (
and

f(O) = 0

If the derivatives of f(t) are nplace transformable, they have Laplace

transforms given by

[i(t)] = sF(s) - f(o+) (2-19)

L[4(t)] = s-F(s) - sf(o+) - i(o+) (2-20)

LI[ I s' ] ).- s2f(0+) - si(0+) - i0(o+) (2-21)

f ] s (s) - s3f(o+) - s i(o+) - r,*'(O+) -*F(o+) (2-22)

anid so forth. Use of the Initial value-theorem to evaluate the deriva-

tives for the example proceeds as follows.

2-17
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Since f (0+) =0.,

--- s 3 +as2 bs+c = 0 (2-23)

and simiarly, since f(O+) and i(O+) are zero,

urn F(t) = ur s s2F(s)] = Ur .s = (2;.2)
t-4-0 s3+ 2 +bs4+c

Because f(O) K, the initial value of the third derivative will be.

mSr f(t) = Urn s[s3 )fs) -¢o+)]

t--0 K--K

- Is3+as2+bs.+ c -K]

K_ (S2 + be + c,)
Jim, ,'S 2+bsc] = -a (2-25)

For the initial value of the fourth derivative,

() = m s[6F(s) - s?(O+)t -"(O+)-

t- -0  .

a -i- a s3 +as2 + bs +  sK +

(a2--b)s3 + (ab- c)s 2 + acs
a r1 K2 b K(a2-b) (2-26); 8 * L s3 + aS2 + bs + c' .

and so forth.

The derivatives evaluated in the fashion illustrated above are

valmble as check points atid to enhance one's phcical gmnp of the

initial chamcter of a response. Also, several derivativenr can be cont-

bined into a ?.claurin ser-.es to gOve an approximation to the initial

response. The Vaclaurin series, in general, is
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(t f +tk() 2 y+0 ?0
r~t to)+to)+ ~1()+ + *** (2-27)

For the example above this series would be

This initial response version of the i hclaurin series supplements the

bbclaurin series developed later for the steady-state response.

!he 71Z1 Value Dieore. The final value theorem eqtates the value
of a time faction, f(t), a t approaches infinity to that of the func-

tion sF(s) as s approaches zero. Obviously, there must be more restric-
tions on the application of this theorem than there were on that for the

initial value. For example, .an F(s) which has poles in thc right half
plane, or on the axis of inginaries (both allowed in the initial value

theorem), gives rise to an f(t) which has no final value. so in addition
to the requirement shared with the initial value theorem, i.e., that the
function f(t) being evaluateda 0 tptoaeand its deritive are aplace

transfornble, it is also necessary to Specify thet the functhon sF(s) is

analytic on the axis of imginaries and in the right ha f plane. Then,

withthese restrictions,

nm sF(s) = inm f(t) (2-29)'
s- O -s-c

Using the previous example and ssuing tuat F(s) has no poles in

the right half plane or on the iThiern., axis,

lim f(t) nm s K 0 (2-30)
t- . s--0O s3 + a&2 + bs + c

Similarly, all higher derivatives also have zero fina- values.

As another example, consider

F(o)K(-1

2-19
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The initial value theorem gives f(O) = 0, but the application of the,

final value theorem to find f(t)1t... is ,not possible because sF(s) has
a pole at the origin (-on the imaginary axis). However, if .is positive:,

the derivative i(t) does have a final value, i.e.,

lia (t) = lir s Ks (2-32)
02(s + M)

Further, since the theorem would show that-f(t), F(t), and all the higher

derivatives are zero as t goes to infinity, it is apparent that f(t) can
U0 be approximated for lalge values of t by /

f(t) Kt-

In addition to giving the type of particular answers\illustrated

above., the initial and final value theorems may be regarded as a basis

for establishing the intuitive feeling that the steady-state time response

is determined largely by the behavior of F(s) at small values of the

complex frequency, s. and that the time response at small values of time

depends largely on F(s) at large values of s. This is often a helpful

concept (although the restrictions of the two underlying theorems should

be kept thoroughly in mind whenever it is used).

As a case in point consider a distinction between the so-called Bode

and root locus gains. A response transform, or some one of its deriva-

tives or integrals if more than one power of free s is present, my be

written either as

(sn + +1 ... +a,_' I s + an)
Y(s) K a,,-i a (2-34)

s(S m+n + blsm+ni + .. + n + bin+n)

or as

n+ a sn-1 + "' n-1 + 1

Y (s) K- , n an a ) (2-35)
i X~) K/si+n  b, s= n- l br~-

- 4 -s +... +

bnm+n bm+n
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As introduced by Eq. 2-10, et seq.., the first style (Eq., 2-34) is in the

root-locus form, with a, root locus ain, K; the second (Eq. 2-5) is in

Bode, form, with a Bode gain, K. Assumirng that the final value theorem

is applicable, it is easy to see that the Bode gain is the final value,

Yt) - lim [sY(si] K(-36)
t--ca s.-.-O

The root locus gain, on the other hand, is connected with the initial

response. It is, in fact, the first nonzero derivative at t= 0, i.e.,

j - S[s'Y(s)] =(2-37)atm"Is-"
t-0-O

Steady-State Respons C1oultjons by a ?aolurin Series. In the

first article of this section a Maclaurin series having time as the

variable vas ,usod to develop an expression for the initial response of

a system. In this article a* Ynclaurin- series will 4gain be used, but in

the transorz donain and to evolve an approximation to the steady!-state

respg0nse. As a -result of the two developments, approximte expressions

for both the initial and final phases of response can be obtained

directly from the polynomial ratio form of F(s) without factoring.,

As shown in previous_ parts 'of this chapter the output of an element

'when excited by some input is given by

Y(s) Ns)X)
Y~) D ~ (s) (2-38)

W(s)X(s)

where Y(s) is the transform-of the output resp6nse, X(s) that of the

input,-and W(s) = N(s)/D(s), is a ratio of polynomials in s containing all

the system- characteristics. If W(s) is expanded in a Yfclaiirin series

in s, the series will converse for small values, of s.

2-21



+ R2 d+_'_ l... nW( , .

W(S) = (0) ds s =O 2! ds2  n !. - de

= Cs + Cs2  +.'"+ csn +

(2-39)

where On, = , ())n. ds s [s=o

lUitiplying the series by X(s) to give the output transform, Y(s), one

obtains

Y s) = CoX(s) C sX(s) + C2s2X(s) + *.. + cssnx(s) + (2o40)

This expression is- vapid in the region near s= 0, where the series is

convergent. Recognizing that

dt t = s 1X(s) sn-lx(o+) - (o,) - ... tn- ()

the -series for the output transform reduces to

If an infinity of higher order iinulso functions (which occur at t = 0

and hence have no effect on U~rge t) are ignored, ,the i.fnverse transform

is given by

Ys Cox() ,(t) + WJ0[k(t) + , ,(t)+_  x ,+...

r- COX~t) + Cl W + Cx2o+)fc + cCs +t

where thevprimes denote differentiation wi h respe t to s. This series

is valid only a those imes correspondin to a O. i.e. ,In the

2-22
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neighborhood governed: by the final value theorem., and- -all of the

riestrictions of the theorem apply. As a piactical ziatter the -series is

suitable to. define the 'stea~dy-state components of a system. response,

resumng either that the transients-have died -away or that the- have

been otherwise removed.

The Cals shall be called general outpu response coefficients. In

thie'speclilcase where x(t) is the system commn' inu and y(t) is the,

system error., these coefficients are the well-known error coefficients

of conventionial-servo analysis'.

As might be expected, the result given by Eq. 2-4I2 is tbok forced

solution .fcr a system subjected to a power series 'input. The transient

component of-the solution is not obtained, although all the output termns

baving time variations iLdentical with those of the power series-input are

given -by the relation. Because -power series, are handy devices to describe

such things as idealized donmand signals derived froma empirical data,

average eff ects of Atndom functions which -have stationary charEcteristics

about a time-varying imean,. etc.-, the- response series has miny uses.

Tocomplete- the discussion of' thb response series the first few

output response coefficients will -be developed for a general system.

For this purpose let W(s) have the form

'b0l+bl s,+b 2 P 2 + - -+ bnsn
W~s). a2+ais +a,2 Sri

b0-+-b~s~~s2 +*.. b~5~(2-43) -

a 'I +,-!(a 8-~ -~ 2 + .. + a nf1~

For most input-output combinations the order of the numerator wi-li be

less thani that of the -denominatozr, so bn and perhaps other bij's will be

zero. In Eq. 2-4f3 the numerator is allowed to be-the same order -as the

dcnominator to include such- important cases as 'ixiput-error' closed-loop

response functions.

Perhaps the simples~t way to, generate the required Macl~aurin- _sdries

for functions like those of Eq. 2-43 is to silnply dl:vide the- d:6nbminat6r?
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into the nueriator. tecause the denominator is of the form + z(s),

r this can be readily accomplished by expanding [I + z(s)] - as

I - z(s) + z2 (i ) -r., and then multiplying by the numerator polynomial.

Proceeding in this way,

W~+as + *) ansn- 1)

bo + bl s+ b2s2 + + b) - I(a + a2s +  +

+ ( ) +a 2 s + ... +ans i +a 2 s + "" + 1"'"

( 21a S+ (al a \ a2] 2F 0 b + b l s + b 2 s + , .. -+ bn s ) I- +o- aS \i0/ aOl

(a \)3 2aja2 a3J 31  +

S a2+

bo 1 !2.]b - b 2 b ..
- NOb b140~y a 0 b o ~ +2s

- 11~ ~-~ "bo -'~~ L b~ Ob2- b3 *

(2-44)

Putting this result in a somewhat different form, which is often =easicr

to work-with,

bo PC)bl.- ambo aob2 -a2bo (a1 1 al bas 2

W(S) S-+ + aga]~o

2 bo

, aob-3b O  _ a2 - aO~ra 2  a2 ao a.ls3 +..

CO + CIS + C~s2  + C + .. (2-45)

The dependence of successive output response cofficients upon preceding

coefficients can be deduced by properly associating various combinations

of terms in Eq. 2-115, viz:
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• b0

bT  a1
C1  = a0  a0,C

(2.46)-
b2 a2  a1C2 = Fo_ r0 CO - a0 C
Sa 3 C a2 C1  a

C3= ao - ao - o o1 - P 2

This form) which is readily extended by inspection, provides a convenient

algorithm for the computation of output response coefficients in-a

sequential fashion.

9.5 PA PAL MPACTON CONZOTIO T flTXOS

Higher order equations come about through multidegree-of-fredom

systems. In mny cases the responses of more than one degree of freedom

are desired. These can be found using the technique already described,

i.e., decompose the response transforms for each degree of freedom into

partial fraction expansions, then inverse transform term by term. With

this procedure the labor is increased in proportion to the number of

degrees of freedom for which information is desired.

A far more efficient way to determine responses for the several

degrees of freedom starts with the original equations of motion for the

system. In these the degrees of freedom are dependent variables in a

set of simultaneous constant-coefficient differential equations. Trans-

formation of the simultaneous differential equations simplifies them to

a set :of linear algebraic equations. At this point, determinants or any

equivalent method such as the elimination of variables between equations

can be applied to find the trans~form of each dependent variable. In the

technique to be described the partial fraction coefficients are determined

for one degree of freedom. For all the other degrees of freedom, ratios

of partial fraction coefficients are obtained from the transformed equa-

tions of motion. The partial fraction coefficient ratios can then be

used with the partial fraction coefficients for the first degree of



freedom to determine the coefficients appropriate to the-other degrees

of freedom.

The procedure outlined above is best understood with the aid of an.

illustration. Consider the following set of three simultanebos equations:

all(S)X(s) + a 12 (s)Y(s) + a 1 3 (s)Z(s) = b1 (s)8 1 (s) (2-47)

a2l(s)X(s) + a22(s)Y(s) + a23(s)Z(s) = b2(s)§2(s) (2-48)

a31(s)X(s) + a3(s)Y(s) + a33(s)Z(s) = b3(s)83(s) (2-49)

Here, x(t), y(t), and z(t) are the dependent variables, the 5's are the

input forcing functions, and the equations are in the transformed state

so that the coefficients ajj(s) are polynomials in s. Equations 2-47

and 2-49 are simple linear equations and can be solved by determinants

or an equivalent procedure. X(s) becomes:

b1 B1  a 12  a 1 3

b2 82  a22  a23

b3 3  a32 a33 (S
x(s) b a a- (2-50)

AIs) A(s).

and similarly, Y(s) and Z(s) are given by:

al I b1 51  al 3

a21 b252  a23

Y(S) a 31  b383  a33 Ny(s) (2-51)
A(s) A(s)

and

all a12  b1 51

a21  a22  -b262
. a3i a32 b353  ( )
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where
all al 2 a 1 3

&(s) a21  a2 a23

a31  a32 a3

The denominator, A(s), is the characteristic 'function of the system. When

it is equated to zero to make the characteristic equation A(s) 0 0, the

separate factors yield the roots, s = which determine the nature Of

the individual exponential motions or modes of motion. These equations can

be solved for x(t), y(t), and "'t) by performing the following conventional

steps:

Expand the determinant, A(s) and find its roots. These
roots, and the poles introduced by Si(s), are the poles
shared by X(s), Y(s), and Z(s). In the illustrative
case the poles will be denoted by subscripts 1,2,3,...n.

KA(S + ql)(s + q2 )(s + q 3) "" (s+qO) = A(s) 0

.or A(-q 1 ) =A(-q2) A(.-q4) A A(-q) 0= =n) = 'o

Expand X(s), Y(s), and Z(s) as partial fractions, and
find the partial fraction coefficients as shown in the
last section. Examples of this for X(s) and Y(s) are
given below. The expressions for X(s) and Y(s) are,
continued to allow for poles of 51(s), 52(s), and 53(s))
which.-are left as arbitiary funcid6ns.

xl x2  +n

X(s) s 1  + X2 + .. + ..S+ ql S +. q2 s+ qn

Y(s) = Y + Y2 + ... + . .
o + ql S + q2 s + qn

As the final step, perform the inverse transformation term
term by terra by utilizing Table 2-2.

x ) = xe-qlt + x2e-q2t + ... + xne -qnt  +

y(t) y=le-qlt + y2e-
q 2 t  + .. + yne -q n t  + .

In the above procedure the partial fraction coefficients xk, yk, zk

for each dependent variable are found separately. These coefficients
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4

will, of course, be partiaily determined by the particular type of input,

requiring some recalculation if the forms of the inputs are changed.

The simplification promised at the outset of this section is mde

by finding the ratios of the partial fraction coefficients which describe

a particular mode, i.e., the component of each dependent variable char-

acterized by a particular root of A(s) = 0. These ratios, say yl/X 1 or

zk/xk, are independent of the input 5's, and can therefore be foWun in

general terms.

To illustrate the lack of dependence on input, consider

the ratio of xk to Yk. For the mode characterized by the
roots sk,

s = -qk s(2-

Dividing xk by Yk,

(2-54)

X N (s + q1 [t [N(s) 1s +Nx-7 -
- = I A6s) = INY-S- J

'For a set of arbitrary input B's, say 51, 82, and 53, the
Nx(s)/Ny(s), ratio becomes

IXO b'A - -1 2 5A. 1 t b3§3A31 (-5
= -b 1161 2 + b2 82 2 - bP63A

where the A are the minors of the determinant A(s). il)
for example, is obtained from A(s) by crossing out the row
and the column in which a11 appears. For another set of
arbitrary inputs, ba' 6b, and Be, the ratio becomes

NX(s) b1baA61 ' -. b2bbA21 + b3bc3I
( blba l2 + b25b2 - bc32 (2-5)

The various B's ere-arbitrary, so [Nx(s)/Ny(S)Il 2
is not equal to [Nx(s)/Ny(S)| a ]b ingeneral. Hower
the ratio my conceivably be e4u for some values of s.
to find these particular values, the two equations are set
equal to one another. Then,

bl bati 1 - b2Bbb-v2 + b3 60ts1  bl 61 A1 1 -b252k±e1 + b3b3A31  (-7
-b 1 a2 + b25bP2 - I 32 -b 1 B1 A12 + b2 B2/- 2 - b 5 36(32
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* Multiplying. the means by the extremes, and combining come terms,

bjb 2 (L&11AP-2 -NI J,55 - 1b

1 b32(~ 1 1 A - t1 2 631 ) (516c '5%

+ b2 b3 (A3 1tQ22 - heA >c - 83b 0 (2-58)

Now the difference in products of the minors can be identified
as

A1122 A 1 = a,3 t&(s)

A - A=

so that equation (2-58) becomes

NO)[a5 3 b b2 (62 5a rl 8b) - a2 b 3b 1 bi - 8 3%a)

+ 1 b2b3 (r)2c 5 3613)] =0 (2 )

or A(s) o0

Since (s) is and can be zero only at the roots s = -ql, tq2 j
-q3 "" - -n, the ratio xk/yk = [Nx(S)/Ny(s)s =qk is inde-
pendent of the input B's.

Because. of this lack of dependence on inputs, the various ratios

yk/xk and zk/xk can be computed for any input. Ordinarily the simplest

results are obtained when all the 6's but one are set equal to zero.

Thus, the modal response ratio yk/xk can be found from any of the ratios

of minors given below evaluated at s= -qk:

_ _ 1
;Aijs A ~=-60)

xk-qk s = -qkk

The mode of motion corresponding to qk will be represented in the several

degrees of freedom by the t rmo

xk- qk t  in xt

(yXk) xe -qkt in y(t) (2-61)

(zk/X,)xke-qkt  in z(t)
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where xk is :presumed to be the partial fraction coefficient which is

individually computed for the particular input of interest. The total

responses are obtained by summing the responses for the several modes,

e.g., for y(t)

y~t)x, ()xe~ +(; )xget + . .+ ()n e't + *. (2-62)

,Modal response ratios are, in general, complex quantities and can be

considered as plane vectors. When the components for any one mode are

inserted into the equations of motion, each term in the equations becomes,

in general, complex and can also be treated as a plane vector. Thus, when

the components from Eq. 2-61 are inserted into the homogeneous form of

Eq. 2-47 there results

[ii~)~ ()i2 ~)i() (2-63)

Interpreted graphically as a vector diagram, Eq. 2-63 amounts in general

to-a closed polygon.. This provides a convenient check on the calculation

of modal response ratios. As will appear later, both the modal response

ratios and the vector polygons play a central role in the desciiption and

physical interpretation of vehicle motion characteristics.

2.6 WNXOHTZnG YUN(!1N AND MODAL -10POSTh OOEFFIOMWT

The preceding sections have reviewed techniques for finding the

transient response of an element when it is subjec*;ed to general types of

;analytical input functions. Definition of such transient responses for

all system-dependent variables, together with the input functions which

:,ause them, is one reasonable way to characterize the system. It has

great virtue as a direct prediction of '-xpected system behavior when the

inputs used are representative of those to which the system will be

subjected in practice.

On the other hand, the calculation of a catalog of input-reSpdnse

pairs can be a lot of trouble, and can sometimes tend to overcomplicate

the physical picture. For instance, when the input is complex the part
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of the response dominated by the system characteristics is usualy

difficult to separate from that part which depends primarily on the input.

To alleviate the labor and to circumvent potential confusion. another way

is needed to characterize the transient 'response. Two special transient

responses to simple input forms are commonly used for this purpose. One

is the weighting function, or system response to a unit impulse; and the

other is its integral, the indical response or indicial admittance,

which is- the system response to a unit step function. Because the inputs

in both cases are simple, these standard responses exhibit the character-

istic modes of the system in the simplest ways possible without contanl-

nation due to complex input shapes. Also, with the weighting function

or indicial response known, the time response, y(t), of the system toany

input, x(t), is readily found by the use of superposition. For the weight-

Ing function the convolution integral is used, i.e.,

y(t) f w(t-.,)x(i) dr t>
0

A modified form of tls integral, called Duhael's integral, is appropriate

when the Indicial response, 1(t), is available,
itA

y(t) x(O+)I(t) +j I(t-r) dx dT (2-64)

As a consequence of these equations, all response calculations can be

carried out directly in the time domain if desired.*

More often than not the weighting functions or indicial responses

are used as ends in themselves to exhibit in a standard way the transient

characteristics of the system, and not as intermediaries 'in response

calculations using the convolution or Duhamel integral. The latter

*There are conveniont aleorithms for numerical convolution when this

may be required. See, for example,

J. G. Truxal), Autointic Feedback Control System Synthesis, McGraw-.
Hill Book Co., Icd.' New York, 1955, pp. 63-71.

A. TWstin, "A Method of Anlyzing the Behavior of Linear Systems in
Terms of Time Series," J. IEEE Pt. Iia, Vol. 94, 194r, pp. 152-160.
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procedure is seldom followed because transient responses will uSually be

more easily obtained by working in the transform donain, i.e., by trans-

forming the convolution to the algebraic equation

Y(s) 'W(s)X(s) (2-65)

expanding into partial fractions, and 4nverting to the time domain. There

are cases, too, where one finds a -convoiation integral itself of value.

These applications include situations where:

* It is easier to integrate directly than to go through the
other transformation procesces '

* The input function or weighting .function does not possess
a rational laplace transform

• The input function or weighting function is so complex

that taking its Iaplace transform is impractical

* The input function or weighting function is known on3.y
graphically or experimentally

Thus the use of the convolution approach is often 'a practical necessity.

Like other transient responses, the impulse response or weighting

function will have a transform which can be resolved into partial frac-

tions. In this case the partial-frmction coefficients are called modal

response coefficients and are accorded a special symbol, Qi" Thus the

transformed weighting function will be

W(s) = mn

1.4 1

where, the roots -q1 are those of the system's characteristic equation

A(s) = 0. Upon Inverse transforming, the weighting function becomes

m+nw (t) %e-git
i=1

Splitting W(s) into partial fractions is equivalent to replaciAg the

(m+n)th-order differential equation for w(t) by m+ n, first-order

differential equations of the form

:2'-
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II

1i(t)- + qjwi( t) Q18(t) , i 1,. 2, .. , m +n

where- wi(O) = 0 and the total weighting function is

w(t) - w1 (t) + w2 (t) + ... +-wi(t + .Wm+n(t.)

Thus the total weighting function is equivalent to the summed responses

of m+n first-order systems excited by an impulse input, as 'shown in

Fig. 2-3. The modal response coefficients can also be thought of as

initial conditions on unity-gain elemental systems (the Qi's in Fig. 2-3

replaced by 1 's) which, with no other excitation (no impulse input to the

system), results in a system output equal to the weighting function. Yor

this interpretation the elemental differential equations would be

*i(t) + q:Li(t) = 0 , i 1 , 2, ... , m+n (2-66)

where wi(O) =Qi

The output ,response coefficients developed in Section 2.4 can be

interpreted as time-weighted moments of the weighting function. The

laplace transform of the nth time moment, tny(t), of the oitput y(t) is.

[t[tny (t)] - (-d)nn ) (2-67)dsn'

so the transform of the integral of tny(t) will be

Li T ny (T) d = (2-68)

Under conditions where the final value theorem will apply, i.e., where

lim ft Tny () dT exists,

.~ t nYT)dT ur s.(:2~ ny(s) (1 f ny(,)

t- oo 0.-0O S dsn dsn

(-)n Wdn '~s-~ ( _69)
2ds- J



S + qz

________I I w3(t)
S + q3 3

-~O~ wM - - _ _ I(t)
1s"+"q1 +

Pig nee lFrt-re ytm

C*cpoan toCmoetSo h4lihi~,Fnto



If the input, x(t), is taken to be a unit in5ulse, then X(s)= 1 and the

output, y(t), will be the system weihting function. When these condi-

tions are inserted into Eq. 2-69, the ,result becomes

f _ %f(T) dT n -~~[d~~
f L. ds'~(-o

Using Eq. 2-39, the output response coefficients Cn can be identified as

1' d'W(s) H ( 1 )lf
= n dsn .J (2-71)

This relationship between output response coefficients and the time,

moments of the weighting function is helpful for physical interpretation

and also provides the basis for simple measurement of the response coef-

ficients using computer techniques.

Other useful connections between the output response coefficients

and weighting function parameters are relationsliips involving the modal

response coefficients, Q. It can be shown* that

m+n Q
CO = -

i= q

=*n %(2-72)

m+n
C1E = , 1+k

i=I (-q1)

*D. T. McRuer and R. L. Stapleford, Sensitivity and Modal 'Response for
~Single-Loop and Mltiloop Systems, ASD-TDR-67.-812, Jan. 1965; PP. 1 9- 21.
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2.7' TIM VECTOR RPflESERIATIOIS F'OR TIM1' WIGHiTX00 FUCTION

The weighting function is most conventionally shown as a time history.

This gives a general view of system response characteristics and is often

all. that is required on low order systems. For higher order systems,

however, rany modes make up] the composite motions, some more dominant than

others.' Also, a giyen mode is, in general, reflected with differeht scales

into each of the several degrees of freedom. For these reasons attention

must be focused on the modal components of the system weighting functions

if a complete physical picture is to be obtained. This is accomplished by

application of the principleg already described in the discussion of modal

response ratios as enhanced by the use of a graphical interpretation using

the time vectors.

The method of time vectors is based on the concept of rotating vectors

to represent component or total motion quantities. It !z particularly

useful in representing the amplitude and phasing relationships between such

qtiantities in .oscillatory motion. The concepts of time vectors stem from

harmonic motion analysis and alternating current theory, with minor modi-

fications to handle time-variable amplitudes.* The basic ideas are readily

grasped with the aid cf simple examples, so this procedure will be adopted

here.

Consider the second-order system described by the differential equation

d2x dx + 2 f (2
dt2

If the desired response, x, is to be the weighting function, w(t), then the

forcing function,,-f(t), is replac& by the unit impulse, 5(t), and Eq. 2-73

*R. K. Mueller, "A Graphical Solution of Stability Problems," Jour.

Aeron. Sc., June 1937.

M. F. Gardner and J. L. Barnes, Transients in Linear Systems, John
Wiley and Sons, Inc., New York, 1942 pp. 174 ff.

K. 1I. Doetsch, The Time Vector Method for Stability Investigations,
ARC R and M 29115i 1957. -,

W. 0. Breubaus, Resimiu of the Time Vector Method as a Means for
SAnalyzinAircmrf tStabi.:I.ty, WAIC-T-52-299, Nov. 1952.
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becomes

dp-w 2Viw c~l~~8t (2-74)

dt2  dt

The right side of this equation is zero for t > 0, and most of our inter-

est will be centered on the solutions in this region. When Inplace

transformed, Eq. 2-74 bec6mes

wcs) -

+ s a~ +

x x2 (2-75)

+s + (ta- JtV- ) + ""

-where x, = 1/2j and x2 -i/Pj. The inverse transfornm can be written

either as a real function or as a sum of the two modes involved repre-

tented as complex numbers. Both forms are useful for time vector con-

siderations; each one is given below.

w(t) =e - lt sin e - 2 t , t _ 0 (2-76)

or

w(t) - wi (t) + w2(t)

xl e-tcOnte J% t t + x2et(OnteJnV-t , t2! 0 (2-77)

The two comp.ex modes in Eq. 2-77 when combined become the 'damped real

oscillation of Eq. 2-76. Either mode can be used to represent the real

weighting function by considering only their real parts,, i .e.,

w(t) = 2 Re w1 (t) = 2 Re w2 (t) (2-78),

To remove the t _> 0 restriction on the weighting function given as

Eq. 2-76, the form there can be multiplied by the unit step function,

u(t). This makes w(t) zero for t < 0 and equal. to the damped oscillation
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thereafter. This will be of no consequence for the tirime vector

representation, although it is required in order that w(t) satisfy Eq. 2-74.

Using this forms, the weighting function and its first and second deriva-

tives become

w(t) =[e-ant sin (arn 1f-2 t)]u(t) (2-79)

*(t) = 1 ,j-tent sin (cnf t + + O)]u(t) (2-80)

M(t) [ t(e-Vnt sin_t t + , + 20)ju(t)+ wnif--i 5(t) (2-81)

where 0, the so-called damping angle, is given by the equiva.ent expres-

sions

e =- sin I

- cos-  (2-82)

t=-1

Insertion of oEqs.-2-79 through 2-81 into the differential equatiofi

for the weighting function identically satisfies the latter.. Without the

unit step function multiplier, the 5 function terQa in '(t) (Eq. 2-81)

would not have arisen and Eq. 2-74 would then be satisfied only for t > 0.

Now that this point has been made, we will drop the awkward u(t) multipliers

and the 6 function in O and consider only those times greater than zero.

The first mode of Eq. 2-77 and its derivatives are

w1 (t) = X lneWftej n  1 t , t 0 (2-83)

/-t)ntel fo 7 t + v/2 + 0

waV\ 1 et"' i, , t> 0 (2-84)

w1 (t) - exienteon/ t + n + 201 , t _ 0 (2-85)
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Comparing these three equations with their equivalents for the real

oscillation provides the basis for a very useful and simple rule, to wit:

When any derivative of a component of motion is differentiated, the

amplitude is multiplied by wn and the phase angle is increased by ir/2 + 6

when applying the rule to the second. mode, the phase angle would be con-

sidered as all of the exponent multiplied by -a; thus, ir/2 + 0 is added'

to 0-nlt t).

The fundamenta! concept of time vectors is that either periodic or

aperiodic motions can be considered as generated by a time vector rotat-

ing with constant angular velocity about a fixed point. When the motion

is a constant-amplitude oscillation the time vector is of fixed length,

whereas its length varies with time for subsiding or diverging oscilla-

tions and aperiodic motions. 'The gniierating motion of the time vector

for the damped sinusoidal weighting function is illustrated in Fig. 2-4

for-a damping ratio of 0.5. As the time vector rotates at a constant

velocity, wn I 2, its amplitude decreases exponentially, so that the

trace of the tip is a logarithmic spiral. At any timej the angle between

the tangent and the nornr.l to the radius vector of the spiral is Just the

damping angle, 0.

The connection between the generating vector and the weighting

function can be appreciated by considering the projection of the vector

-onto theo-vertical axis. At each instant the projection is equal to the

value of the weighting function at that time. The derivatives of the

weighting function can be considered in a similar fashion.

As illustrated in Fig. 2-h, i is displaced by A/2 plus the damping

angle from V, °and V is further displaced by this same increment from .

Also, the generating vectors are longer than that for the weighting

function by the factors 0wn and dF respectively. If there were no

damping, 0 would be zero and the systvm would be a simpl.e harmonic

oscillator wherein the velocity and acceleration are, respectively, 900

and 1800 out of phase with the disp] acement.

Figure 2-5 reproduces the .time v tors for the weighting function

and its derivatives, and also indicates the scaling of quantities in the

diffegential equat.on proportiona.l to therie terms. When these individual
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components of the differential equation are added together, they form a

time vector diagram which represents in graphical fashion the equation

and its components. For the second-order system this is always an

isoscelcs triangle. The vertex angle is equal to 20, which indicates the

degree of damping in the system. The ratio of the altitude of the triangle

to an isosceles side is equal to the cosine of 0 and is therefore a measure

of the frequency of the damped motion, %r1 1-O, as compared with that

of the undamped motion, a%. The length of each time vector in the triangle,

and thus the eptire triangle, shrinks at the same rate as the parameters

of motion. The relative relationships, however, are unmodified so it is

usual to consider the time vector triangle to be frozen at a particular

instant.

These explanations have been carried out using the real form of the

-weighting function, although the w, complex component could have bcen used

Just as well. For that ratter, the w2 component can also serve, although

conventions would have to be changed because its direction of rotation is

opposite that assumed in the figures.

The illustrative problem has thus far been treated as a, one-degree-

of-freedom system. Since itis sedond,-order, however, it can as well be

considered a two-degree-of-freedom systemtand thus serve as the simplest

example of the use of modal response ratios in construction of time vector

diagrams. A two-degree-of-freedom system having the weighting function

already described is given by

(s + t%) X(s) - (n jrF? -_2 Y(s) - 0

(2-86)
CJnft X(s) + (s + tan) Y(8) = Fs),

The chaiActeristic function is, of course, A = s2 + 2tinS + and the

numerators of the X and Y response tkansforms are

_() F(s)
(2-87)

4 Nds) F).(s- +
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The modal response ratios are given by

X+Ijn =~ a
G, = iw~a+ J% t-2(2-88)

Y2 S+ ~~]-

Considering the first mode oiy, the time vectors for x, and *1 -and the

modal response ratio, y1/x 1 , are shown in Fig. 2-6a. Also given there

are scaled quantities involved in the: two equations of motion. 'The, two

vector triangles shown in FiZs. ,2-6b and 2-6c illustrate the time vector

diagram for the two equations of motion. The point illustrated here over

and above those described previously is that the terms involving y are

derived from x I or xl .by using the modal response ratio Yl/xl. Because

all variables have the same phase angle (ic/2 + .) and the same multiplying

factor (wn) between successive derivatives, the ratio of two derivatives

of different components is not affected by increasing or lowering the

order 'of differentiation simultaneously for both .cppnents,; that is,_

" or - -- etc.
X1  X1  Rl Xi Xl

Thus, the modal response ratio yl/Xl can be used to obtain either yl or 1

by multiplying by xI and k1, respectively.

While the above developments have used the simplest possible example

to provide clarity of explanation, the greatest benefits of the time vector

method appear for higher order systems with several degrees of freedom. The

vector diagrams in these cases becom1e polygons of forces or moments, with,

for each mode, one polygon per equation of motion. Because of cross-coupling

forces or moments linking the different degiees of freedom, these polygons

are generally mort complicated than simple triangle's. The graphical nature
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of the polygons, howeVer, Still allrws the ready visualization of key

physical relationships. Thus, the diagrams show the reltive amplitudes "

and phasings between the different variables of oscillatory motion modes

,and provide a direct physical appreciation for the effects of individual

parameters on the motion.

2.8 T SwYRFmakON xODEIS

The discussion of mathematicai models to this point has emphasized

the transient response performance of an element when subjected to vari-

ous inputs. This has been done because the usual end result of a system

study is a prediction of the physical performance of a system, and tran-

sient responses are as physical a result as can be attained. However,

analytical models should not be restricted to those of the transient

response variety alone because transient response models have several

defects. First, the transient response to a particular input is usually

dominated by one or two modes, even though the system may be of higher

order, because of differences in time and amplitude scale factors among

the several modes. Modes that might be important in responses to differ-

ent inputs, or that might have pronounced effects on performance if system

parameters were slightly changed, L..y be suppressed to A large extent.

Second, it is seldom easy to combine directly the transient response

models of several complex elements into a single one describing the

combination of the elements in a system. Even to combine two or more

series elements having known weighting functions into an over-all weight-

ing function using repeated -convolution is an irksome computational task.

Third, and finally, it is sometimes troublesome, using the convolution

integral, to modify the transient response model obtained for simple

inputs to one consistent with other more complex inputs. To overcome

these difficulties a different form of matheiatical model is desired which

* Defines the element as an entity by exhibiting with
equal emphasis all of the element characteristic parame-
ters and/or modes

• Allows the models of individual elements to be combined
simply into those of the combination

* Can be directly applied in the transform donain for the
intermediate stages of transient response calculations
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The tansform of the weighting function, which is the transform of

the output (with 61-1 initial conditione'*zero) divided by the transform

of the input, is a model which fulfills these requirements. This func-

tibn has a S6upremo theoretical and practical importance, and again a

special nmei It is called a transfer function of the system. For the

general system of lEqs. 2-1 through 2-4 the transfer function will be

K(Sn +als 1 + .. +anls +an)
=X W(S) n, m+n-1 n.. ) (2-89a)

+ b1 s + . + bi+nI s +'b

n
1] (s +-zj)
j=1 (2-89b)

=Km+n

fl(s + qi)
i=1

m+n (2-89c)

s' + qi

Although the transfer function is one step removed from-a transient

response model, it still has a direct interpretation in transient response

terms. All the infornation necessary for the. construction of weighting

function time responses or time vector diagrams is implicitly contained

in the transfer" function in all its forms. This information is explicit

in only the third form given above (Eq. 2-89c). The factored form

(Eq. 2-89b) provides all the time history infornution, i.e., the system

characteristic roots, -qi, but the modal response coefficients are one

step away. Finally, the first form (Eq. 2-89a) cannot, in general, be

interpreted in time response terms without additional operations. Of

particular interest in this connection is the application of tests which

can describe the general position of the poles without factoring the

polynoimial. These tests will be covered later tuder the subject of

stability.

The transfer function contains only parameters which stem from the
system; it does not depend on the inputs. In this sense the saytem.as

an independent entity is equivalent to the (m+n)r transfer functions



corresponding to its m + n independent degrees of freedbm when subjected

to r independent inputs. Alternatively, it can be stated that the

gains (K), zeros (-zj), and poles (-qi) of the transfer functions com-

pletely define the system.

Bec use input transfonas are converted to- output transforms by

multiplication with the appropriate transfer functions, it is convenient

to characterize the input and output of the "pattern" of Fig. 2;1 by

their Laplace transforms, and to .represent the system by its transfer

functions. The "pattern" of Fig. 2-1 in the case of the example system

of Fig. 2-2 then becomes the block diagram of Fig. 2-7.

Input A Output
62 _

01() r 80 (s)

Fig. 2-7. Block Diagram of
the Spring-Mass-Darnper System

The ease of combining element transfer functions to form the transfer

function of the combination can be illustrated by considering two elements.

in series. If the first has a transfer function

W1 (s) = i (2-90)

and the second a transfer function

W2(s) Z(s) (2-91 )

then the combination has a transfer fnction which is the product of the

individual transfer functions

W(s) = Z(S)= W (s)W() (292)

Contrast this with the same operation using the time doiiin models. Since

the weighting function is the inverse transform of the transfer function

2-h7V
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and ~~w s] '~ t

then, by the convolut.on theorem of the laplace transform,

(t) wCt) 2 (t) w ()w 2 (t- ) d=M --- M; (w)(t(). f)

= ft w2 (T)wl(t- T) dT (2-93)

Because convolution is ordinarily much more difficult to perform than

simple multiplication, the transfer function is gene:ally the most con-

venient forni of mthemtical model to use for iranipulations of this type.

Although the transfer function is fundailentally a -sytsten descriptor,

it does have a physical interpretation as response components in the out-

put response to the hypothetIcal sig-ld e St When such an input .s

applied, the differential equation of the system takes the form

d dm+n - 1 x dx+ bldtml+n-1+'' + bm+n-1 dt + bm+nX

n-i d n l 2-n n -1
SK Id + a d1  + '.. + and-1 at + a (2-94)

dt7

.Trinsforming.,with initial conditions zero, this becomes

K(s n +a s
n -1 + "+an_ s +,an)

X(s) smi+n + b rls+n-1 + + .. + + bi+n s _ Sl)

,0+o n  + ,r .K + a. + *. + an.1s + 1n)
i 1 +i llI+bl ns + .... b .s + bli in-

m~in c:j W(s1 )
S ... +.... for 81 !-q. (2-95)

=I s + qi s- s I
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or, in the tme donmin,

m+n
x(t) Cie -qi  + W(sl)eslt (2-96)

i=I

The term in brackets in Eq. 2-95 is seen to be the transfer function

-evaluated at s= sI . In essence, this is the partial. fraction coefficient

for the forced mode of the system, i.e ., that mode having a time history

identical to the input e l st. The summation represents the effect on the

output of the system's natural modes as excited by the forcing function.

It is instructive to consider Eq. 2-96 for several special values

of el. First, if s, is a real number, either +a or -a, then the forced

component in the time response is either W(+a)e+ t or W(-a)e - t . Here,

the amplitude of' the forced, component is the transfer function for the

particu.ar values of s represented by '+c or --a.

More general.y, s, will be complex, as will W(s I ). In this event,

e jt is one of the two complex conjugate components of a damped sinusoidal

or damped cosinusoidal wave. Alternatively, es l t may be considered as a

generating vector resulting In a damped sinusoidal or cosinusoidal time

history. In either event, the real response to, say, a damped sinusoidal

input, e - a1 t sin wlt , can- be seen to be

m+n
x(t) = T Cie-qit + IW(Sl)!e-alt sin [ait +4W(sl)]

i=I

where Si = -0I + jW1

Here, the transfer function W(s I )',appears as a .agnitude 'and phase angle

in the forced component of the response.

In all of the cases examined above the transfer function could, in

principle, be measured from the responses to. various es1
't input forms

to the extent that; the forced response can be separated from the transients

represented by the su rntion. Ordinarily this is frustrati!gly difficult

or practically Jmpossible. Jowever, for stable or just Slightly unstable
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systems the separation is readily accomplished for the special case 6 jo).
Then the forced respohso is a sinusoid which is separated from the total

response by the simiple expedient of waiting for the transients to become

insignificant for the stable case, or by subtracting out the slightly

divergent mode(s) in the unstable case. The motion component" reirining

consists of a sinusoidal oscillation at frequency w characterized by an

amplitude equal to the irgnitude of the transfer function evaluated at jo),

and a phase angle relative to: the input given by the angle of W(jo)),. The

special transfer function form, W(j), obtained in this nanner is called

the frequency response because of its connection with the system response:

to oscillatory inputs.

2.9 EPPUSENTATIONS. OF ,TRANSFER FUNCTIONS

The transfer functions of systems or elements can be represented in

several useful ways. Among the more prominent of these are the algebraic

representation, the pole-zero plot, and -several variet-ies of the Bode

diagram.* These all explicitly reflect part or all. of the system's pole

and zero characteristics. Other possible representations, such as the

polar plot 6f the frequency response function, implicit.y contain the

same information, but pole and, zero data are more difficult to dissect

from the total representation. Because our emphasis is on trafisferfunc-

tion representations which maximize the easily extractable information,

such forms will not be considered' here.

The transfer functions of concern are, as we have seen, ordinarily

ratios of rational. polynomials in which the denominator is of a higher

dedi'ce than the numerator. When the po]ynomials are factored, they may

be written in the a).tcrnative form:

"H. W. Bodle, Netw.ork Analysis and Feedbackh Amplifier Design, D. Van"

Nostrand Co., Inc., New York, 19115.

N. L. Kusters and W. J. M. Moore,. "A Generalization of the Frequency
Response Method for the Study of Feedback Control Systems," Autow.itic and
R_.ni l" Contr6l, Buttemorths Scientific Publications, london, 1952.

D. T. McRuer, Unified Ana.ysis of linear Feedback Systezms,
ASD-TR-61 -1 18, Wight-Patterson Air For e Base, Ohio, July, 1961.

F. P. De Mello, "Evaluation of Tranlsient System Response," AIl.EiTrans_.,
Pt-. II, Vol. 78, Sept. 1959, pp. 177-186.
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n D
~(S + zi) +j (szj

() j1 sq) jisqj

J=1 i
j r~n s + 1' km-nk

(s) K = K - (2-98)
SkB~s) krn+n-,ksk s + 1

iI

Equations 2-97 and 2-98 display the algebraic representation of the
transfer functions. The sk style 4s appropriate when sonic (k) of the
poles. are zero. The sk style ,can also serve for zeros if the k in the
denominator product superscript is shifted to the numerator.

The function G(s) is a function of a complex variable, ,which -can be
characterized by its poles and zeros. G(s) itself then can be represented
by plotting its poles and zeros on the complex s-plane. This would consti-
tute a pole--zero plot. The pole--zero plots of the most conimon transfer
fmctions or transfer function factors are shown in Table 2-5, where an

open circle represents a zero and a cross represents a pole.

Because G(s) for';a particular value of s is a compJ.ex nuxber., A + JB,
it can be represented by a modul.us or magnitude, IG1 = A2+B2, and an
argtument or phase angle, 4G = tan-1 (B/A)., it is particularly convenient
for the purpose of gr.-aphical constructions to plot 20log1 0 IGI and /,G
against log1 0 I sI while letting the complex variable, s = a + jw, take on
special values in the s-p.nre. The simplest specia. values of s are
obtained by letting s vary along a straight line in the s-plane. When
this is done the transfer function plot compri s:i ng 20 logi 0 1 GI and 4 G
-versus log10 1 I is ca11e d a gnneraized Boe ,diagram. Th e term 20 log10 I G
has the dimensions of decibejls (dB) aicd. is abbreviated as IGIdB' A chart
for converting nagnitudes to dB and vice versa is given as Fig. 2-8.

There are four types of gencelx.5 id. Bode diagira ms which ard often
used, cor):esponding to four dl.f.ereot s-pianc pathways along which s is
co;pelled -to vary. First' is the one in which s .0 + Jo called the
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jay-Bode diagarn, or ;imply Bode diagrn. This is the classical plot

introduced by Bode. Second is the diagcra for which s = +a or s= -a.

These are called a-Bode diagrams, or "siggy" diagrams for short. For

the ja -Iode and ±a-Bode diagrams, s takes on its simplest values as either

an inginary or a real number, and the s-plane pathways are along the

iimginary or real axes (Fig. 2- 9). These are both special cases of

general radial -pathways along which s = s\-g + j i . e. , for

s jco, =0, whereas for s=+a, g jir. Third are the type of Bode

diagrams based on these general radials, called 9-Bodes. These are use-

ful in concept and principle, 'but practical constructions require a very

large number of E-templateo as graphical aids. Because most of the

infornation obtainable using 9 -Bodes can be found just as well with other

types of conventional templates, we shall not consider 9-Bode plots

further here.* Fourth, and finally, is the diagram In which the complex

S - C2j

S= 1  JW

cosT'C
-. "S '- O" S +O"*

-1W

Fig. 2-9. s-Plane Pathways for Generalized Bode Diagram

*,comPjrehens tve set of I Bod.e diegrams for first- and second-order

elements appears in McRuer, 2oc. cit.



variable has a constant re-.al part, oi, and a variable irrUg rJary part,

4 s = 01 + jcn. Such d~hgram¢, are called shift d Bode diagrams. The job-Bode

diagrams and the sigii dia-graim; for the comniion trtansfer function factors

are also s marl:zed in Table 2-4i.

As is apparent in Table 2-5 the Bode r.agnitude dIagims are closely

approximated for wide ranges of the independcent voriable by straight-line

segments with slopes which are integral multiples of ±20 db/decade. This

fact, a simple consequence of the way in which the diagrams "are defined,

represents one of the principal practical advalitages of the Bode diagram.

The actual functions "depart" from the straight-line "asymptotes" only in

the vicinity of changes in the slope of' the asymptotic approkinition.

The breakpoint in slope occurs at the rmgnitude of the pole ,or zero, e.g. j

1/T or a . For the second-order jo-Bedes the aeparture of the amplitude

ratio at the breakpoint is -12fIdb for a pole or 12tIdb for-a zero. These

and other properties of the first- and second-order amplitude ratio compo-

nents are shown in Fig. 2-10. Also at the breakpoint (cjn), the phase

slope, d 4 G/d(ln cp/wj), is equal to -1/ H 31.92/. deg/decade) for a

second-order pole and +1/t for a second-order zero. This provides the

basis for phase asym;,ptotcs as i-llust rated in Figi 2-11- -ihich-a-re- almost

as convenient as the amplitude ratio asymptotes. As indicated by the

slope formula above, and the jw-Bode sur(,. .ies in Table 2-5, the direction

of the phase shift depends on the sign of . In b6th the tab.e and the

figures described here the abscissa is a log scale but, since semilog

graph paper is custox-arily used, the quantities called out along the scale

are expressed in linear units.

'For o-Bodes, illustrations similar to those of Figs. 2-10 and 2-11

are given in Fig. 2-12. Only' the aplitude ratios are shown because the

phase is always zero for second-order factors and shifts abxuptly from

zero to --1800 at a - 1/T for first-order factors. Items 10 and 14 in

Table,2-5 indicate the lacK of symetry betwzeen the siggy plots in the

left and right half p]ans. This has to be taken into account when right

half plane poles or zeros are present. In an actual. problem the presen-

tation with suppressed zero and both right and left ialf plane IG(-a) I
shown sepj'mtely is awkward. When the need arises it is usually more
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cctny-alicnd to 1-Tfl t).(,('o' ! u sto Ar'A it 1V30ts

406d- -th.- P4AP:0 vx %-n tihr. leJA% hk4 plitne r!,t;Z and the JaDa4I-Ac.

-' Cekto which av.cLvrately vboti the "dejxirturei" foruath '.he bde, iad

;i--ae*A.-r it- well a,.; th- actLaJ 4O ,Cuirvez for the, Bode diagramp of

firs1t- .jili-second-cwder fitctors &are given inle~igs . 29-13, 2-14, and 2-15.

2.10 C43XG ~ ~ CX~

-A great 6d'vaniij e in' en~joyed by the transfer function representation

when, the output 9 f'-one of the elements or subsystems is the iniput to

another;, -then-tht- simple rmubbystem transfer functioni models are easily

combined, into 'the' transfer function of the whole s.ystem. Thus, as already.

showin, the txiansfer funiction of the cascaded elements is simply the product

of the- tmansfer function of tle indilidua -1 elements.

X () G S GZ(s) X Z (S

-~ G2  ], XG2~l~.s

Fig. 2-1 6. Combining the T3ansfer Fwicions of Nseaded Hlci.ments

It shorld- be cJe'sr that the multiplicatiorn of concatenated transfer

functions, i).luntmated- in Fig. f~w-6, i6 carried out, on the pole-zero,

diagram by cim~ly vaperposing the p~lt~n and zeros ~bf the component trans-

'for functions. On the jq.i, and a-Bode d~aeraii~s the individnal transfer

function factors arp repr~esentcd by a quantity proportiona~l to the loga-

rithm, of the mnrittude arlA an angle.- Recalling that complex numbers are-

znUlti~licd tog-2ther by multiplying, thei~r ;rit nitudcs vond adding. thei

angles~, it can bce Lppreciated that the mnaltllication of' tranisfer func-'

tionsl is carr'ied- out by -ajlditioni -of thje- o. ih~~ mgiU curves

toiuthor with add tion of the phase-,argles.

Sinee the Ilupxtce transforiation, is a linear opei-at-tiolu, we, call

Justif,-y the useo of zxvins and cdifforentialls in the block dl~miia which

show how the txriis-fr functions, 6f systcnt ele-Ments x.~y be combined. The
suvrhner, d~i:Pve rc~itiF0,, -andI takeoff point ire g:%,d:U Ylu~atdi

Fig. 2-137.'



-Sum-cr Dif fercnlial Tok1' -Off -Point

X(S) S) X(S)+ Z(s) X(S) Xs

Y()Y(S) X(s)
Z(s) :X(s)+ Y(s) Z(s) X(s)- Y(s)

Fig. 2-17. Block Diagram Representations
of the Suzmier, Differeutial, and Takeoff Point

With the rules for combining the transfer functi s of cascaded

elements and the use of the symbols for the summer, differential, and

takeoff .point, it is possible to redraw block diagramm in a variety of

ways by means of block diagram algebra.* The algorithms of block diagram

algebra: are justitied by showing, that two different configurations repre-

sent the same transformcd equation. For :example, the system of Fig. 2-2

could be represented in- block diagram form by the configuration displayed

in Fig. 2-8.

X(S), Y() Y(S)

..~~. I-T:-I--

Fig. 2-18. PAthematical Block Diagram
of the Spring-Yass-Imper System

The most important algorithm of the block diagram algebra of feedback

systems is the series of identities displayed in ,Figs. 2-19 and 2-2O.

*T. D. Graybeal, "Block Diagram etwork Tmcnsformtionr," Flectrical
Enginceorina, Vol. 70, No. 11, Nov. 1951, pp. 985--990.

D. T. McRuer, ed., Methodr of Antlysis anid ,ythesis of Piloted
Aircraft Flight Control Systebl t -61, Bureau of

Aeronautics,) Wash., D. C., 1952.
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R C 1*

G~~ I..-

G G2

p G-

Fig. 2-19. Feedback System Block Dag.ram Identities'

Figure .2-20 shows the speial case in which the feedback transfer function,

G2, is unity. The use of the identities of Figs. 2-,9 and 2-20 allws the

R IC R C_

Fig. 2-20. Reduction of the Unity Feedback System

Block Diagram

the reductlon of the diagram of Fig,; 2-18 to the equivalent form shownc in

Fig. 2; 7 for example.

Figure 2-21 shows the general block diagram of a feedback control

system and the terms used to describe the several parts and signals. The

algebraic derivation of the closed-loop transfer functions is also' shown.

The transfer functions of the several blocks in the forard path, G,

and the feedback path, 02,. are often lenown, or are easily found in factored

f' _u, but both the error-input and output-input transfer fuinctions, involve

a denominator which appears as 1 + G. Thus the problem inherent in linear

feedback system analysis is to find the factors of 1 + C and other infonre-

tion about the closed-oop system, suchi as the modal response coefficients,

when given the open-loop characteristics, G. The means to accomplish this

are discussed, in the next chalpter.
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am=C !3!

The early development of automatic flight controls evclved substan-

tially independently of the use of any mathematics. By 1947., however, it

was widely recognized that the dynamic problems of vehicle control could

not be mastered by cut-and-try techniques or engineers' rules of thumb.

To fill the need, the elaborate and extensive theory of linear feedback

systems was further developei and then quickly applied to an increasingly

wide range of flight control problems. There was a dramatic interplay

between theory and practice where, in many cases, aircraft and missiles

provided both the inspiration for the theoretical developments and the

examples of practical application.

In the intervening years, there have been a large number of both

introductory and advanced texts written on the subject of feedback control

systems. Indeed it is assumed that the reader will have already acquainted

himsblf with the contents of one or more of these.* In order, however, to

*See, for example:

H. M. James, N. B. Nichols, ,and R. S. Phillips, Theory of Servo-
mechanisms, McGraw-Hill Book Co., Inc., New York, 1947.

H. S. Tsien, Engineering Cybernetics, McGraw-Hill Book Co., Inc.,
New York, 1954.

J. G. Truxal, Automatic Feedback Control System Synthesis, McGraw-
Hill Book Co, Inc., New York, 1955.

H. Chestnut and R. W. k4er, Servomechanisms and Regulating Syster-i
Design, Vol. I, 2nd ed., McGraw-Hill Book Co., Inc., New York, 1959.

J. J. D'Azzo and C. H. Houpis, Feedback Control System Analysis and
Synthesis, McGraw-Hill BookCo., Inc., New York, 1960.

R. N. Clark, Introduction to Automatic Control Systems, John Wiley
and Sons, Inc., New York, 1962.

E. C. Barbe, Linear Control Stystems, International Textbook Co.,
Scranton, Pa., 1963.

I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, Inc.,
New York, 1963.

C. J., Savant, Jr., Control System Design, McGraw-Hill Book Co.,"
Inc., New York, 1964.
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allow a connected account of our subject, it Is necessary to review

briefly sow of the mthenatical and physical bases on which it rests.

This chapter continues in sequence from the last, which discussed the

abaracterization of physical systems and system elements by mans of

Mthetical models. The sections which follow contain condensed exposi-

tions of those elements of linear feedback control system theory needed

to understand the later discussions of flight control systems.

All of these topics are involved with stem analysis which, for

linear cobstant-coefficient systems typified by the-s-ingle-loop system

shon inFig. 3-1. consists of five essential steps:

1. Delineation of nominal open-loop system characteristics.
Weis ordinarily starts with the differential equations *

.which describe the nominal controlled element and one or
more of the controller possibilities. This stage is
cohcluded when one or more nominal open-loop transfer
functions, G(s), are available, in factored form, for
further analysis.

2. Determination cf nominal closed-loop, transfer functions)
Gr(s) and Oer(s), from the open-loop transfer function,

3. Calculation of nominal closed-loop system responses for
pertinent inputs.

4. Determination of the changes in G(s) resulting from the
expected variations in the controller and controlled
element characteristics.

5i Consideration of the effects of open-loop system varia-
tions on closed-loop behayior

The topics considered in the next two sections are concerned- with Step 2
for single-loop systems. The similar analysis of multiloop systems is

taken up in Section 3.5. Response calculationo (Step 3) have already been

treated in Chapter 2, and receive further attention in Chapter 10. Tech-

niques for accomplishing Step-.5 are discussed in Section 3.6 for both

single-loop ard multiloop systems. The discussion of Steps 1 and 41 is

for the most part deferred to subsequent chapters.

The first step above-delineation of the open-loop characteristics

in terms of a transfer function, G(s) - is relatively easy for linear

time-invariant systems because transform methods can be used to convert

3-2



0p.n-Lpqp Tiansfer Juntion:

Cts 5n+ ~ 5P1*1*£ 25 .2 an11
GOs) a C -s I + al~ 8;'_ + 92-a-- (+

n
11 (a + z3)

m+n (-b
fl (P + pd)
'1.1 __

Output/Input ransfer Function:,
(SK ,c (5+ Zj)

Ger/Ipu -rnse Function:'-K( ( m+n

Ef 5) (3-3)p~
Ocr(S) 'Rs " 1+ G(s) P*s + (33) nm

(+ AkB) 11(s +qj)

Fig. 3-1.* Single-Loop Linear Feedaeck System and. Basic Notation
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the system differential equations to algebraic equations. Thi!s conversion

permits the intermediate steps in an analysis sequence (e.g., reduction of

simultaneous equations using Cramer's rule and transfer function develop-

ment, mnipulation, and combination) to be carried out using algebraic

forms. Most such forms either are, or can be approximated by, rational

polynomials. Thus, the delineation of open-loop transfer functions in the

form indicated in Fig. 3-1 is basically elementary, with the possible

exception of polynomial factoring (which is also a part of Step 2).

The second step in the analysis sequence-given G(s), find Gcr(s)

and/or Ger(s) - is the central problem of feedback system analys! . This
requires only the solution for the roots of

1 + G(s) = 0

Trivial as it may seem, a great deal of effort has been devoted to find-

ing methods for performing this operation- which are effective and at the

same time promote insight.

An attack on the linear feedback analysis problem is usually presented

in one of two artificially separated ways referred to as the "root locus"

and the "frequency response." The intent here is to show the interrela-

tionships between the ehods and to present. a "unified" technique which

is more efficient and flexible than either method used +by itself.* Never-

theless, by way of introduction we shall briefly review the features of

the root locus method both in two dimensions (wherein gain is a parameter

along the plot) and in three dimensions (where gain is a dimension),t and

then discuss the use of the two principal logarithmic plots. Only then

*The two sections following contain an abbreviated acccuat of only
those parts of a more complete 'report which are required for subsequent
developments. See:

D. T. McRuer, Unified Analysis of Linear Feedback Systems,
ASD-TR-61-118, Wright-Patterson Air Force Base, Ohio, July 1961.

tW. R. Evans, "Graphical Analysis of Control Systems," Trans. AIEE,
Pt. I, Vol. 67, 1948, pp. 547-551; "Control System Synthesis by Root-
Locus Methods," Trans. AIEE, Pt. I, Vo1. 69, 1950, pp. 66-69.

W. R. Evans, Control System Dynamics, McGraw-Hill Book Co., Inc.,
New Yorko 1954.
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shall we emphasize the connections between the methods and point to the

advantages of their coordinated use.

3.2 AMIVUIZA .I !1 -DZWBZWCL ROOT L

Equation 3-4 expresses the fact that in a system-with feedback the

poles of the closed-loop transfer function or roots of the closed-loop

characteristic equation are located at those values of the complex

variabie, s, where
G(s) = -1 (3-1)

Because the function G(s) is itself a complex number, we can write in

place of Eq. 3-4

1o(efle ilk s )  e ej(2k +1) ; k = 0, 1, ±2, ... (12)

which requires the simultaneous satisfaction of

4,G(s) - (2k + 1 )Ar k W 0, ±1, ±2, . (3-6)

adIG(s)l 1 (3-7)

Bach of the factors of G(s) can itself be interpreted as a complex

number, so that

(3-8)

1(, + zh) [__n_
nJ (s, + pi) in. =.l

1=1 -1

where rNh- I's+zhI, ,-l 18 +PiI' 99h .4(s+zh), and qD 4 4(s+pi).

Then the two conditions expressed by Eqs. 3-6 and 3-7 can be rewritten,

Criterion m+n (2k+l)i K > 0
angle: E l h.l I E 'P - - (3-9)

(_' i-i -,x KJc < 0~
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[n 1

)bgnitude: h=1~ 1 (3-10)

[~rDjJ

or finally, as is often more convenient, Eq. 3-10 can be expressed as:

n m+n
20lo g K + E 2od1go rjh - 201og10 ryi 20log, 0 1 0 db

h=1 1=1

which in shorthand form becomes (3-11)

IKIdb + E (rZ ) E Zi
hal (ihdb -1 (~ db=

Figure 3-2 shows how at any point on the s-plane the individual

factors of the 'open-loop function can be graphically represented as vectors.

jw 1W
s as a vector s as a vector ( + r he or

(s.- (s + Zh) or

", a. 0 ° + Zh O - rNh

v e c t oa 
v e c t o r

aa.

-I vector Z h 0 vector

Fig,. 3-2. The Graphical Representation ,,of Open-Loop Function Factors

Note from the geomctry of the diagrams that when the factors are repre-
0

sented by vectors drar from the singularities to the test point, their

angles my be measured counterclockwise from a horizontal line through

the test point.

The vectors from the singularity to all possible points in the

s-plane can be represented by isonagnitude and isoarguir.ent (phase) curves.*

*Y. Chu, "Synthesis of Feedback Control System by Plase-Angee Loci,"
Trans. ATEE, Pt. II, Vol. 71, 1952, pp. 330-339.
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Isonagnitude curves for first-o.& er factors are constructed as loci in

the s-plane for which I(s +piy-I I or [s+zhl, or some measures thereof,

are constant. If the logarithm is taken as the base for the mgnitude

measure, the-,plots for poles and zeios show useful symmetrical forms,

and multiplication operations involving more than one singularity become

additions. There is also a convenient tie-in later with other analysis

techniques. Consequently the isomagnitude plots for firet-order factors

are constructed for constant values of 20 log 0 ji /(s + P)I -(ri) db

or 20'l101s+zhl - (rfh)db . The result is a series of concentric

circles, as shown in Fig. 3-3. If log magnitude is considered as a

dimension measured along an axis perpendicular to the plane of the paper,

then the isovmgnitude loci shown would occur at heights appropriate to

the magnitude dimension. The isonagnitude loci are thus contour maps of

a surface which rises to a point for a pole or sinks to a point for a

zero.

-9o

06 6•

+ 13S # 5 -13e" -45

o) A Pole b) A Zero

Fig. 3-3. Contour Mps and Isoargwnent Curves for a Pole and a Zero

The inoargvricnt curves for thea iirst-ordcr factors are simply

straight lines, issuing mdially Trom the origin which is located at the

pole or zcro location in the s-plane. These are also shown in Fig. 3-3.
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When more than one pole or zero is present, the open-loop function

can be represented as a contour map by adding loarithmic magnitudes of

the several poles and zeros so as to represent the left side of Eq. 3-11.

Points of equal magnitude throughout the s-plane are then joined to make

the contours. The isoargument lines are found siilarly by adding the

angle contribution of each pole and zero so as to represent the left side

of Eq. 3-9 and then Joining points for which these are equal. The

isoargument lines are always orthogonal to the contour lines. so they

are along the gradient. Several exaples, of such naps are presented

later in this section.

.,In the root locus method the roots of the characteristic equation are

found with semigraphical techniques based on the vector representation of

the factors in G(s). An attmpt to determine a root of 1+ G(s) - 0 is

started by choosing a trial value of s (a point on the s-plane) and

imagining the vectors drawn to this point from each of the open-loop poles

and zeros. Figure 3-4 illustrates the angle measurement convention in

root locus construction. When a trial point is discovered which satisfies

the phase condition-of Eq. 3-9, a possible root location is identified.

In principle, this procedure, repeated a sufficient number of times,

delineates the l of all possible closed-loop roots.

S(S + pt)(s +p) 1w

"P3 -z "P2

IEON h-EDI 'ON I' (#D, + D 03h I

Fig. 3-i. Angle Measurement Convention in Root Locus Construction
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The second step in the method is to find the points on the locus

corresponding to the satisfaction of the nagnituide condition, i.e.,

Eq. 3-10, for particular values assigned to K.*

Although the root locus can be found using the repetitive process

outlined above, one of the most attractive features of the method is

that large segments of the locus can be found by applying root locus

construction rules, which do not. require the search for satisfactory

trial points. The rules which apply when G(s) is a ratio of rational

polynomials are recapitulated, without proof, as follows: t

1. The total number of separate branches of the locus is equal

to the total number of open-loop poles, m+n.

2. The root locus is synetrical about the real axis (W = 0).

3. The branches of the locus originate at the open-loop poles.

4. The branches of the locus terminate at the open-loop zeros
or at infinity.

a. n (the total number of zeros) branches of the
locus terminate on the open-loop zeros.

b. m branches approach points at infinity and are
asymptotic to straight lines which originate

at a point on the real axis, commonly called the
"center of gravity," given by

m+n n
Epi - Ezi

aCYg. - i=1 m J= (3-12)

and which make angles with the real axis of

(2k+1) g K>0

m

or k = 0, ±1, ±2, ... (3-13)

2k ; K<0

*While both of these steps could be carried out with a protractor,

dividers, and a slide rule, a device for mechanically adding angles and
logarithiic magnitudes has been developed especially for the purpose.
This is the "Spirule," copyright 1959 by North American Aviation. Inc.,
available from The Spirule Company, 9728 El Venado, Whittier, Ca3ifornla.

tMeRuer, ibid. Also: Evans, id.; W. R, Evans, "Control System Syn-

thesis by Root Locus Methods," Trans. AIEE, Pt. I, Vol. 69, 195o0, pp. 66-69;
F. M. Reza, "Some Mathematical Properties of Root Loci for Control System
Dosin," Trans. AIf-, Pt. I, Vol. '5, 1956, pp. 103-108; H. Lass, "A Note
on the Root-Locus Method," Prec. M, Vol. 44, May 1956, p. 693.
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5. The root locus on the real axis lies along altrnate segments
Whe connecting real poles and zeros (or the poi, / t nfinity).
hen k is positive (negative), the locus exists In- te interls

where there is ani odd (even) total number .of poles 4ad zeros to the
right of the interval.

6. The tankents to the locus at derture I a ple or arrival
at a zero are given by:

Departure angle = (oAet angle ftg )(Critio angle)other poles &a zes[-(riein nl

Arrival angle - +et angle from ) ( • )A'0the" poles and zeros) (Criterion angle

7,, The breakawaZ of the locus fi the real axis (or its rendez-
vous thereon) is located, where the net change in angle caused

by a small vertical displacement of the trial point is zero. These
points correspond to the real roots of the equation

do

8. At junction p (where the roots coalesce) the tangents to
the branches of the locus are equally spaced over 2a rad = 3600.

9. The direction in which the locus moves for increasing IKI,.at
the point -qi on the locus, is shown by the orientation of the

sensitivity vector:

S1 1J -(3-15)

=dj- - -

Note that this rule does not work to find the direction of the locus
at breakaway and rendezvous points. On the other hand, in an algebraic
form, it may be effectively employed to find the location of breakaway
or rendezvous points when the poles and zeros are on the real axis.

10. When m (the excess of poles over zeros) > 2, the sum of the
X is a constant equal to the sum of the open-loop poles.

Then branches tending to the left must be "balanced" by branches
tending to the right. When k -1, the sum of the roots is the same
constant added to -K.

11. The locus crosses the inaginar axis when 1 +0(s) w 0shas pure
imaginary roots. This corresponds to the neutral stability

condition indicated by the Routh-Hurwitz criterion or a similar test
for stability, and is indicated by the vanishing of the imaginary
part of the inverse open-loop function evaluated with o =0) i.e.,

Im =0 - mIm [P(jc)a,* ) 0 (3-16)
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&12. When a complete set of closed-loop roots is availhble for
some value of K these roots may be used in the same fashion

as open-loop poles for the purpose of continuing the plot of the
locus. As a consequence, for exanple, the result of Rule 9 may be
obtained by using Rule 6 in connection with ary complete set of
closed-loop roots.

13. The product of the negatives of the roots is equal to the
sum of the product of the negatives of the open-loop poles,

b3 +n, and K times the product of the negatives, of the open-loop
zeros, Kan, i.e.,

m+n
f qi bm-. + Ka nI m_1 (3-17)

i=1l

The. application of the rules for the construction of root loci can.

now be illustrated with the aid of several simple' examples. These are

chosen so as to. clarify the introduction to the "unified" method;

luvle 1: st-order system

R E iC

Fig. 3-5. Negative Feedback Around an Integrator

The open-loop function is, G(s) -K/s and the only root of 1+o(s) =0
is almost trivially found to bes - K. The closed-loop function
is C (s),K

T- = I + Gts) (a+)
and, if necessary, the weighting function or indicial response
could be found by the inverse laplace transformation using Table 2-2.

Suppose, however, that the algebra were not so easy, and we
wanted to apply the techniques discussed so far. The contour
map of the function 1/s has already been precented as Fig. 3 -3a.
The pole-zero plot is simply a pole at the origin, and the use
of Rules 1 to 5 tells us that the root locus showi In Fig. 3-6
has only one branch which lies along the negative real axis
between the origin and the point at infinity. Rules 6 to 9
might be invoked but are not necessary. Rule 10 indicates the
algebraic result already derived, and indeed Eq. 3-10 my be
used to obtain the same result. The closed-loop roots are
located along the locus at a radial distance from the origin
equal to the gain constant K. The closed-loop roots are marked
along the locus for several values of the gain. A comparison
of Fig. 3-6 with Fig. 3-3a shows that the locus of roots, rarked

3-11
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V with the position of the closed-loop roots for selected values
-of the gain constant, K, is the same thing as the criterion
angle contour (-:K in this case) mrked with the intersections
of the appropriate magnitude contours.

1. There is one branch of the locus JW

2. The locus is symmetrical about the real axis

3. The locus originates on the open-loop pole

4. -The locus terminates on a point at infinity and is
asymptotic to a line which originates at a=O and
makes an angle with the real axis of 3t rad

5. The root locus exists in the interval between the
pole and the point at infinity where there is one
(an odd number) pole to the right

(2 db) (6 dhb) (0 db) (- 12 dbj
,Kz4 KZ2 K21,, K",'4ph" I A- . , F6

-4 -3 -2. "I

Fig. 3-6. Root Locus for First-Order System, G(s) = K/s

In Fig. 3-6 gain Is a parameter along the locus. Alternatively,
an additional dimension, coming out of the plane of the paper,
can be introduced to show the variation of the closed-loop root
with gain. This leads to the three-dimensional surface shown
in isometric view in Fig. 3-7. The surface is, of course,
identi *.,to that represented by the contour map of Fig. 3-.i
When the gain is very smal, I.e., K -- 0., the addition of the
logarithmic magnitudes would remove the zero db reference plane
to an Infinite distance, and only the top of the mountain (which
stretches up to infinity) would protrude above the waterline.
The closed-loop root would be at the location of the open-loop
pole, i.e., =0. As the gain is increased, the mountain is
shoved up like a volcano emerging from the ocean. The closed-
loop root is alwvas found at the intersection of the waterline
and the criterion angle contour. For example, with K-I, the
waterline for the function K/s would be in the reference plane
(zero db). With Kw 2, so that 20 log10 K = +6 db, the waterline
for K/s would be-at the level marked -6 db for the function 1/s
itself. The various positions of the closed-loop root, as the
surface is raised or lowered with respect to the reference
plane by raising or lowering the gain, K, are illustrated for
several values of K in Fig. 3-7. From this figure it can be
readily appreciated that an increase in the gain, which raises
the surface with respect t- the reference plane, is eittirely
equivalent to lowering the _..ference plane with respeit to the
surface. We sliall ordinarily take the latter view for
convenience.
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I==' 2. Unit mmerator sOefd-order 4ystem

Consider now the feedback system illustrated in Fig. 3-8.

Fig. 3-8., A Second-Order Servomechanism

The closed-loop function is given by the expression

*C G~)K
R I + (s) a (s 2 +ps+K)

and the closed-loop roots my be found from the quadratic
formula

01,2 = 1 ±

As long as the pin, K, is less than p2/4, the roots are real,
while, when K > P2 /4, the roots are complex conjugates.

The root locus for the jW
function K1/s(s1 + P) is IN 2presented in Fig. 3-9
for K > O. The appli-
cation of Rules 1 -3,
5, and 6 is straight-
forward. The breakaway
point coincides with
the origin of the high -- * t
ain asymptotes, which KI  i

make angles of +900 and
100 with the real

~PtsoRules 4 and 7
yi'eld the same result
for this particular Kp

problem. In fact, the
high gin asymptotes
are the locus in this
case. The breakaway Fig. 3-9. Root Locus for Uit
condition is an example Numerator Second-Order System,
of the junction point G(s) = K/[S(S+p)]
(Rule 7), and it is
seen that the tangents of both the coalescing and the departing
locus branches are equally spaced over 3600. It is also easy
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to see that, at the breakaway point, Rule 9 leads to

= 12 o

Ps 6-p/2

This is an example of the blowup of the oensitivity vector at
multiorder poles, a topic which will be discussed more fully
later.

Application of Rule 10 (for m > 2) to find closed-loop roots
which are compatible in that they have the same open-loop gain
is extremely easy folr this example because the sum of :the
roots is -P and there are only two roots present. Selection
of one then immediately specifies the other (e.g., see points
labeled K1 and K2 in Fig. 3-9)• Specific values for the pins
must be found using Eq. 3-10, although one can, of course,
solve the characteristic equetion at various values of gain in
this' elementary example. Also, the gain at breakaway willbe
K = p 2 /4, found, as already noted, by the condition for two
equal roots.

The contour map for the function 1/s(s +p), with pal, is pre-
sented in Fig. 3-10. The locus of roots is identif-id with the
-1800 angle contour which lies between the poles and leaves the
real axis at the breakaway point, b =-1/2. The locus approaches
the points at infinity along the two asymptotes. Points on the
locus corresponding to closed-loop roots for particular values
of the gain, K, are indicated by the intersections of the
nagnitude contours with the locus. The values illustrated
(+20 db, +12 db, +6 db, 0 db, -6 db, -12 db) correspond, in
decibel measure, to the inverse of the gain, i.e., K = 1/10i,
1/4, 1/2, 1, 2, 4.

The isometric view of the surface corresponding to the transfer
function 1/s(s+l) is presented in Fie. 3-11. Several contours
of constant angle and constant magnitude are shown on the sur-
face. Remembering that the increase in gain from zero is
analogous to starting the reference plane at infinity and moving
it _down, we can see that the closed-loop roots at the intersec-
tion of the -1800 :angle contour and the waterline move "downhill"
from the poles toward each other, coalesce at the saddle point,
and then split apart and continue "downhill."
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1. Vle 3: Seonmd-o der system with a zr

Figure 3-12 shows another second-order system feedback con-
troiler which, in this case, contains a first-order lead.

RE 1rds+Z) C_

Fig. 3-12. A Second-Order Feedback Control with Lead

The closed-loop characteristic equation is given by
2 + Ks + Kz= 0

which has the roots

These will be compl.._ for 0 < K : 54z and real for K > 4z.

From Rules 4 and 5 the real axis to the left of the zero is seen
to be on the root locus, with one of the closed-loop poles termi-
nating on the zero as the other proceeds to infinity alrng the
-1800 (negative real axis) high gain asymptote. Rule 7, i.e.,

do s) K( i(+2z).
doas

indicates a rendezvous of two complex roots at s = -2z. The
roots start their Journey into the complex plane along pathways
tangent to the imaginary axis, per Rule 6 or 8. As shown in
Fig. 3-13, the pathway is a circle, centered at the zero s . -z.
This can be shown analytically by considering the equation for
the root locus as developed below. Z

Ir:6 -- , x 4z Xc ,6 ! cr

Fig. 3-13. Root Locus for Second-Order System
with Lead, G(s) - K(s + z)/s 2
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*> 'The statement G(s) = -1 is equivalent to

(3-18)

Because p(s)/%(s) is complex, Eq. 3-18 can be revritten as

Re +k 8I m[ I =1 -I (--19)

Since K is real, the imginary term mist vanish on the locus
of roots. Consequently the root locus criteria statements
then become

]j [A ] - 0 Tm [(s)&*(s)] (3-20)

Re I§ -KC (3-21)

These correspond to Eqs. 3-9 and 3-10. Equation 3-20 in partic-
ular can be very useful when equations for the root locus are
desired.* Thus, applying Eq. 3-20 to the case at hand,

Tm [P(s)a*(S)] = Tm[s2 (s+ z)*]

w IM [(O, =12 (,-j4)+ z)]

a Tm [ ,2(G+z)+4(,,-.)] +a[o2+2 z+,,,]

C c[(o+Z)2+(-z2] . 0

or, 0 O 0

and (a+z) 2 + a = z

*V. C. M. Yeh, "Synthesis of Feedback Control Systems by Cin-Contour
and Root-Contour Methods)" Trans. AIE, Pt. II, Vol. 75, 1956 pp. 85-95.

H. Banerjee and T. J. Higgins, "Root Locus Delineations for Higher-
Order Servomechanisma," Proc. of the National Electronic Conf., Vol. XIII,
195T, pp. 520- 536.
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The first equation (c= 0) is that of the locus along the real
y s, while the second is the circle., centered at a a -z., with

a radius z.

Figure 3-if is the contour map for the function G(s) - (s+ z)/s 2 ,

with z 1. It represents the addition of the logartmic= ,gni-
tudes and the angle contributions of' o of the poles of Fig. 3-3a
located at the origin and one oif-the zeros of Fig. 3-3b located
at sm-1. Again, of :course, the locus of roots is traced by the

100 angle contour.

Figure 3-15 is a cutavay isometric view of the surface repre-
sented by the contour map of Fig. 3-14. The view shown empha-
sizes the real axis., the cavity due to the zero.and the coinci-
dent twin peaks due to the poles at the origin. A conventional
root locus is also given in Fig. 3-1. to better show the circu-
lar portion of the locus which is largely behind the hill on the
isometric view. on these plots the change in sensitivity of the
roots to gain changes is apparent. Starting with the open-loop
poles at the origin with K= 0, there is initially very little
shift in the roots with gain, i.e., the slope of the peak is
very steep and a large vertical movement produces but a small
horizontal displacement. By the time a gain of JIKdb - 0 is
reached, the locus has only progressed along an arc of 600 in
the plan view (see Fig. 3-15a). From this point a mere factor
of four (12 db) moves the roots all the rest of the way to the
rendezvous point where they coalesce. Then a very snall addi-
tional increment In pain separates them very rapidly as the one
travels along the asyptote to the point at infinity, while the
other closed-loop root is driven toward the location of the zero.
The region of high sensitivity is readily recognized in the iso-
metric view because the surface is relatively flat there. Note
ain how the locus appears to run "downhill" approaching, In

this case, the point at infinity and the zero.

Inn's 4: Uait-Nimtow t iw-Oser ftstm

Figure 3-16 shows the block diagram of a third-order servomecha-
nism:

R EwC

Fig. 3-16. Block Diagram of a Thtrd-Order Servomechanism

The closed-loop function in this case is:

C K
s3 s+(a+ b)0 + abs ;7-
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6db 0db

'I -6 db

18db 12 db 18 db 6

-7 6 -5-4 -3 -2 qI

e) Cenventienal Root Lee,,:.

6) Isometic View NvO

(I4+0Figure 3- 15. Conventional Root Locus and Isometric View of the Surface G(s) x -
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While, in principle, it is still possible to solve the charac-
teristic equation algebraically, the job is zw a little more
difficult and, conversely, the advantages of the root locus
method are nov more prominent. In the case of higher order
systems, the algebraic factoring of the characteristic function
can only be done with repetitive numerical trials, and the
semigraphical methods really come into their own.

The root locus for the system of Fig. 3-16 is shown in Fig. 3-17.
Rules 1, 3, and 5 are used to find the branches of the locus on
the real axis. Rule 4 is invoked to determine the origin of the
asMptotes and the angles which they make with the real axis.
Either Rule 7 or Rule 9 may be used to determine the breakaway
point, 1 [,1 .r---z,

a - 1 [a+ b)J- vaF ab+J ;2 K >

Rule 8 says that here the four branches are at right angles to
one another, a Rule 11 shows where the locus crosses the
imaginary axis, i.e.,. , ! ab. [In this case, the Routh-Hurvitz
stability criterion requires ab(a +b) > K for stability, so that
the value of the gain at this point is also established.] Rule 10
can be used to determine the position of the third root when the
ipin is just sufficient to produce neutral oscillatory stability,
and Rule 12 enables the angle, 7, to be readily found. To obtain
the equation for the locus) Eq 3-20 is applied:

I, Im = ~ w+ a)Iii +a)( a )

- c4..c2+,[3a2 +2(a+b)a + ab~j

"0

So the locus is given by

M0 a 0

C -2 = 30 2 +2(a+b)d+ab

After a few manipulations, the latter equation can be put Into
the conventioml form for a hyperbola:

2 2

VaT-ab b2 3ffVa --ab +b2
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For higher order systems the locus equations become exceedingly
complex, so they are not too helpfuil in either the construction
process or as an aid to the more analytically inclined.

With the choice a =1, b =5, the contour map of the open-loop
function is, shown in Fig. 3-18. The locus of roots, of course,
lies along the angle contour lines corresponding to ±1800 and
i w0° , and crosses the inaginary axis when the gain is just a
little less than 30 db. K = 5(1 +5) - 30 "- 29.5 db is the
actual gain for the onset of instability.

Figure 3-19 is an isometric view of the surftce represented by
the contour ap of Fig. 3;18. It iis particularly clear here
that as the gain i increased the closed-loop roots do not
move evenly along the locus represented in two dimensions.
Instead, the closed-loop roots move a large distance along the
locus for a suall increment in gain where the surface is flat,
and where the surface is steep the roots move hardly at ali for
comparatively big increments in gain. Both this and similar
observations for the last example are associated with the con-
cept of "sensitivity," to which we shall return later.

Uiwa2a G:enera2uationi of the Simple 1sMMUDe I - 3
As a final enample of the root locus, the three simple systems

described previously will be generalized to systems which have
poles at locations other than the origin (for Example: 1, a first-_
order lead is also added). Loci for all these systems are given
in FU. 3-20. For these it is particularly worth remarking that
the addition of 'the same real part to, or subtraction from, all
the open-loop poles and zeros does not alter the geometry of
the locus; it merely moves the whole locus right or left with
respect to the imaginary axis.

As a final conment on the root locus method, it should be noted that

the technique is useful not only to find the closed-loop roots of feed-

back systems, but also to factor any polynomial, P(s) + Kc(s). d(s) and

p(s) do not have to represent respectively the numerator and denominator

of the transfer function of a physical system, nor does K have to be a

"gain." If c(s) and p(s) are any polynomials whose factors are known,

and K is any parameter (which appears only linearly in the complete

polynomials) whose influence we wish to trace, we can put the problem

into root locus form, i.e.,. write:

P(S) + KM(s) - 0

Ps)* ) =3-24
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jW 0-OPEN-LOOP ZERO$

K+K.

-. -pCI-CLSED-LOOP POLES

-PC

(a) System with single poleoA zero COs)
(sop)

Fb <p~ 2 101W
For ((j~) ,p (real roots)

II2 2 PI pp.I~ K

For, K.NpP - PIP? (complex roots)

2C*c PCpP

(b)-System' with two poles G() (8+ K(~

Fdr K-4(a-p),(complex roots) iw

qw, 2 PP 2 p+Kz

ForK>4(a-p)Creal moots) i C

(a) System with lead & second orde!r pole, G(s)~ ~ a ; p
(s 9.P)F

Pig. 3-20. Boot Lcdi for Simple Systems
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We have had occasion to note that for a given value of s, G(s) is a

coulex number which can be expressed in terms of a modulus or magnitude

and an argument or phase angle. The variable s itself is complex (a+ jai)

so that-a plot of G(s) as a continuous function of s would, in general,

require four dimensions or two plots each of thee dimensions, e.g.,

IG(s) I versus s and 4G(s) versus s. The contour maps presented in the

2ast section are plan viers of such plots, whereas the isometric views

directly show IG(s)Idb versus s. Unfortunately, such constructions are

impractically difficult even f'or moderately uncomplicated cases. Conse-

quently the usual practice is to construct only the root locus plan view

with compatible sets of gain contour intersections marked on each branch;

and even this construction, which contains only the most essential

Information, can be tedious: withoutautomatic computation.

To obtain more complete information without undue labor, the graphical

requirements can be reduced to one plot of three or two plots of two dimen-

sions if the real and imaginary parts of s, a and a, are taken to be

linearly connected. That is to say, we would find it relatively easy to
-plot IGI and 4G versus s, as s takes all values along a straight line in

the s-plane. The simplest and most practical forms of such plots corre-

spond to s =a;0aO0 and s=jci ;,aa0. Sometimes a plot with

a = ai + Jw; ci a a nonzero constant is also used and, finally, there is

a version where s= + j V1i )u, 1 =a constant. In Bo plot form

these are the c-Bode, ja-Bode, shifted Bode, and I-Bode diagrams which

have all been described in Section 2.9.

In the analysis of closed-loop systems our objective is to find the

roots of 1+G(s) = 0. This may be accomplished in either of two ways by

means of the logarithmic Bode plots. The first, and more direct, pro-

cedure is to find the conditions under which G(s) = -1. The second

procedure, often combined with the first, involves two steps: (a) Devel-

opment of a graphical representation of the closed-loop function and

(b) decomposition of this closed-loop form into its zeros and poles. The

poles of the closed-loop function are the roots of the characteristic
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. equation. Both operations can be clarified by solving the same set of

simple exanples used to illustrate the root locus method.

3amaep 1: First-order system

Consider the system of Fig. 3-5 with the open-loop function
G(s) = K/s. The surface of Fig. 3-7 is symmetric around the
origin. A section in a vertical plane containing the real
axis would appear as in Fig. 3-21, as would also a section in
a vertical plane containing the axis of iagiraries.

IGIdb

! 0db

(or -jw) (or +W)

Fig. 3-21. A Section Containing the Real Axis
or the Axis of Imaginaries

When the abscissas are distorted so that 201og1 0 1G(- )l is
plotted against log10 Ioi , the branch of the sigma diagram
illustrated in Table 2-5, Item ), is the result. It often
happens, as is the case here, that only the branch corre-
sponding to the section containing the negative real axis,
where s=-a so G(s) =G(-o), is of any interest. Because the
poles and zeros of the transfer functions with which we are
concerned are always real or occur in complex conjugate pairs,
the joa>Bode diagram is symmetrical about the origin. The plot
for negative frequencies is the reflection of the plot for
positive frequencies. Therefore, it is customary to superpose
the logarithmic plot of G(s) ; s =-a on the logarithmic plot of
G(s) ; s=+Jco. This is done in Fig. 3-22, where it is seen
that not only do IG(-a)I and IG(J)I have the same asymptotes,
but, in this case, are themselves identical. In fact, the
more general plot of IG(s)ldb versus log Isl will also coincide
with the two special cases for s =-o and s =jw.
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IGKi)d 0d g ine er/W Io gki
0 Wa406
. IGljw)Idk ..... - -= _s

or0 AM70 d l r high gain
[ IG(S) db]

; 0*, IsI, (log scale)

o -9 000

Ia.

- 18o" G(-r)

Fig. 3-22. a-Bode and J3-Bode Diagrams; G(s) = X/s

'In the plot of Fig. 3-22 the effect of adding the a-Bode or
j3-Bode representation of the constant, K, would be to shift
the whole plot up or down an amount 20 log10 K with respect to
the reference zero-db line. This, of course, has the same
appearance as moving the zero-db line. We can therefore iden-
tify positions of the zero-db line with values of the constant.
When the line is high the gain constant, K, is small; and when
the zero.,db line is set low it corresponds to high gain. When
the plot is made on semilogarithmic paper, the transfer func-
tion, K/s, is plotted by making the line with -20 db/decade slope
intersect the zero-db line where the value of the independent
variable on the logarithmic scale is numerically equal to the
value of K. Note that in this example the phase angle of the
j3-Bode plot is always -90c, while the phase angle of the G(-c)
plot is always -1800. That this should be so has already been
nade evident in the contour map of Fig. 3-3a and the isometria
view of Fig. 3-7.

While it is somewhat like using an elephant gun to kill a flea,
we can use the plot of Fig. 3-2 to demonstrate the two methods
of determining the closed-loop root(s) from the logarithmic
plots. Using the direct method, it is seen that the condition
G(s) = -1 is satisfied where the zero-db line intersects the
IG(-o) I plot and 4G(-a) = -1800. Since, in this case, the angle
criterion is satisfied over the whole range of the plot, each
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intersection of a zero-db line with the siga diagram represents
a closed-loop factor (s +K) or, alternatively. a cloeud-loop
root, s - -K. This result, of course, is precisely the same as
the ones already obtained by mans of algebra and the root locus
method. The a-Bode is seen, in fact, to be a root locus plot
wherein the negative of the root is given as a function of gain.
This is the simplest example of the so-called Bode root locus.

The decomposition method of using the logarithmic plot can be
illustrated as follows:

Ocr(s) o) >>G )

cr i(G(s)) Gs G(s) << i

Therefore, the asymptotes of the closed-loop function lie along
the zero-db (mragnitude = 1) line when G(s) is large, and along
the same asymptote as the open-loop function when G(s) is small.
Starting from the low frequency end where G(s) >> 1 and the high
frequency end where 0(s) << 1, these asymptotes can be projected
toward each other. They intersect at conK. This, then, is the
asymptotic magnitude diagram of the closed-loop function Grc.
It is shown by the dashed lines in Fig. 3-22 for the gain K2.
This cSosed-loop function my be recognized as a first-order lag,
Item ( ) of Table 2-5, with an inverse time constant I/T = K.
The pole of the closed-loop function, s = -1/T - -K, is the robt
of the characteristic equation, and we have discovered for the
fourth time the dependence of this root on K.

ZMa le 2: UMit-numerator seod-oider system

Figure 3-23 shows the a-Bode and Jm-Bode diagrams for the system
of Fig. 3-8 with p i l. Several possible positions of the zero-db
line corresponding to both low. and relatively high values of the
gain are marked on the diagram. Closed-loop roots on the real
axis are indicated by the intersections of the zero-db line with
the sigma diagram where 4 G(-a) = -1800. Only the portion of the
sigma diagram between a= O and a=1 is therefore of any interest.
The diagram shows two separate real roots (mrked with squares)
for a low value of gain. As the gain is increased, the indicated
positions of these roots move toward each other and coalesce at
the local minimum of the sigma diagram. As the gain I.s further
increased, no real roots are indicated. In fact, as we know,
the roots have become complex.

The second procedure is still applicable, however. The low
frequency and high frequency asymptotes can be projected so as
to meetat a point where there is a local change in the slope
of the asymptotic approximation of from zero to -4O db/decade.
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j G-aIt20 db 01I/10

12 db - - "I4
end /

I -12w I db -------- --- "-I- . . ___ __

E
< wCL

Log Scale

- • -9o" 4 GQlW)

0
0.

-180

Fig. 3-23. a-Bode and ja)-Bode Diagrams; G(s) = K/s(s +1)

The figure shows this construction in dashed lines. This closed-
loop asymptotic approximation is recognized as the representa-
tion of a second-order transfer function with damping ratio
t< 1 and an undamped natural frequency, (L, indicated by the
break or corner frequency. Then, since the sum of the roots is
the sum of the poles, 2tCLobL = 1, and the closed-loop damping
ratio will be tCL W 1/PAiL-.

A complete root locus, in which the magnitudes of the roots
appear versus gain in Bode diagram coordinates, is the result of
the combined procedures described above. This is shown in
Fig. 3-24, for the case where the pole, -p, is kept general.
The conventional root locus of Fig. 3-9 is also given for com-
parison and correlation.

As in the first example, the locus of real roots coincides with
that portion of the a-Bode diagram for which * G(-a) -1 800"
These correspond to the real axis roots on the conventional
root locus, with branch C) moving toward branch ( and meeting
at the breakaway point, ab. On this part of the Bode root locus
the abscissa scale used is log a, with the closed-loop charac-
teristics at a particular gain, Ka, being read as the negative
of the roots, a, and a., i.e., as they appear in the closed-
loop factors, (s + c'l (s + a2).
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For gains larger than that for breakaway there are two complexr conjugate roots, which have a damping ratiq CCL.Oand a mgnitude,
given by the undamped natural frequency oL. In this elementary
system the locus of m versus gain coincides with the high fre-
quency asymptote of IG( j)Idb, and its extrapolation back to the
breakaway point. This, branch, labeled (i), corresponds to the
similarly labeled branch on the conventional root locus. For a
given gain, Kb (ordinate), the closed-loop undamped natural
frequency, cIL, is read as the abscissa (log stl) of branch@.
The damping ratio, on the other hand, cannot be cm'sidered as a
dimension; instead, it must be treated as a parameter and noted
along the plot. At breakavay it is, of course, identically 1,
and it decreases as gain increases. For the current example it
is Just CCL = P/2ftL, so it is readily obtained.

In more complicated problems than this one, the closed-loop
complx roots are seldom obtained as simply as illustrated here.
For these recourse to supplementary techniques is often required.
One such technique is the shifted Bode diagram, which can be
readily illustrated by this example. If, in the numerical
version of the example, the variable s is changed to a' s+ (1/2),
then the open-loop function becomes

G(s') = = K K= 4K
81+ S'- - (20'+1 -2s'+1

This shift in s to e' corresponds to a shift in the origin of
one-half unit to the left. Addition of the logarithmic repre-
sentations of the jw-Bode magnitude diagrams of the individual
factors yields the second-order magnitude characteristic illus-
trated in Fig. 3-25. The negative sign of the Bode gain, -K,
is taken into account by making the phase angle -180' at low
frequency. The phase angle contributions of the other transfer
function factors exactly cancel, so that it is readily appreci-
ated that the angle criterion is satisfied over the whole range
of o). This, of course, is to be expected since Fig. 3-25 is a
representation of the section through the transfer function
surface of Figs. 3-10 and 3-11 at a - -1/2 where the angle I&
always -1800. As for the magnitude criterion, the figure shows
that there is no intersection of the zero-db line and the magni-
tude plot for K C 1, but as soon as K exceeds 1, there is an
intersection. The intersection moves along the actual magnitude
curve (with the departures applied to the asymptotes) toward the
right as the gain, K, is ncreased. A typical intersection is
shown by the square. The frequency, I CO at which this' inter-
section occurs is the damed frequency of the closed-loop root.
For the case in which K the intersection is at c=o -/2 and
the closed-loop factor can be written in .terms of Phe real part, a,
and imaginary part) P, as (s+Q)2 +p2  Is+(1/2)] + (V-3/2) 2 = o.
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I

KvI/4

" 0 db ,K v I12db
" 0 KiR4I

-Ise
0

e_ 270'

Log Scole

Fig. 3-25. Shifted Jw-Bode Diagmm

3muaie J: Beoo ,oimdei, system with . zero

c-Bode and Jo,-Bode diagrams for the system of Fig. 3-12 are
presented in Fig. 3-26. The rendezvous point on the real axis
is again indicated by the extremum of the IG(-a)I plot where
4G(-a) -.-1800. Also, the near cancellation of the zero and
the clos-ed-loop pole at high gain is shown by the closed-loop
asymptotic plot which is constructed proceeding from both ends.
The zero of the open-loop function is also a zero of the closed-
loop function, while the roots are poles of the closed-loop
function. The asymptotic approxintion therefore has appropri-
ate breakpoint corners at each of the magnitudes corresponding
to these singularities.

At gains less than that for breakaway the roots are complex
(i.e., along the circular part of the locus in Fig. 3-13). The
mvgnitudes of these are readily found by decomposition, as
exemplified in Fig. 3-27 for two values of gain, K1 and K2 . At
very emall values of e, the amplitude tatio, IG(Jan) I, is very
large compared with unity, so the low frequency closedrloop
asymptote coincides with the open-loop zero-db line. This low
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IG jw)Idb

- - % ignh Goin 0db Line
LAsymptote IGrCIdb

Log Scale

0,d --

4 G(-O.)

Fig. 5426. cr-Bdde and, Jap-3oe 'Diagrans, for G(s) X K[(s/z) + j/2

frequency asymptote of IGcr.Idb, either-runs into the IG(ia))Id
asymptotesi e6.g.,, at iC for' K. or reaches the ugnitude y

* the zero, eg., at z for K2, before intersecting the asymptote
IG(Jca4'Idb.pl-ot. ,,In either-event there is a change in slope.
This is z~f db/deade for the K1 case, corresponding to the
closed-loop undamped natural frequency M~L, )and +20 db/decade
for 'the K2 examle),,associated with the appearance 'of the zero.
The asymptotic I epl- plot for the low gain case has its final
breakpoint at the zero, whereas the last slope change for the
higher gain examiple occurs at the closed-loop undamped natural
frequency coL2 Finally), the damping ratio is found from the
sum of the roots reaationship,.which in this case is

2 tCLObL =K - K/z

9CL K/2mLL K/2zaML
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1G,000I0 Asy,;

0 db line,

(K --K1).
*AsF __________________ _________________

O'CLI wCL2

a- 4j 151 (log scat.)

Fig. 3-27. Determiriition "of the Magnitude of Complex Roots
" by Decompositioni

Gathering the above data together into a common presentation
results. in the Bofte root locus of Fig. 3-28. The branches shown
thereon correspond with the similarly numbered ones on the con-
ventional. root locus also shown.* The closed-loop natural
frequency ii presented along branch Q) of the Bode root locus,
and is read on the logarithmic abscissa scale as 1st. On this
branch tCL is a parameter. At breakaway, where the gain is
I~z2 I db the branch D rendezvous with its- mirror image (with

which. t coincides on the Bode root locus), and the two branches
then depart in op osite directions along the real axis a&
branches ®andQ)
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* IGow)I 0 db
~I~bIncreasing (.:Z2

z 2z

Log Scale

('/Bode Root-Locus

(b) Conventional Root Locus

Fig. 3-28. Bode and Conventional Root Locus for G(s) = 4(S/Z) +]I,
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When the a-Bode and 3ao-Bode diagram for the system of.Jig. 3-1 6
are c~nistructed they appear as in Fig. 3-29. -The saddle point
where the real roots coalesce and then break away.,becomting comn-
plex conjugates, is recognized 'as the local minim= of the -IG(-r)I

A diagram where. 4LG(-a) = - 8o. The diagram also shows that at
the value of gain where this occurs, the third real root has
hardly moved from the open-loop pole. The point where the locus
of roots crosses the axis of inaginaries is recognized as the
frequency where -4 G(jow) is -1800 and the gain required is read
off by inspection. (This corresponds to the sixailtaneous satis-
faction of the angle and magnitude cri ceria in the plane con-
taining the axis of inaginaries ..

and "ypical" 0 db /Xi

E 0d l1 ine for neutral

ab

..90

SO

4 G(oW)

270 P

Fig. 3-29. a-Bode and ja>-Bode Diagrams;
G (s) =l tsl(s/a)'+11E(s/b) +1]

3-39



The a-Bode and jo)-Bode plots show without effort the breakaway
4points and the condition for marginal stability. These impor-

tant points are usually only tediously determined by algebraic
or root locus methods..

Location of the closed-loop roots for a typical value of the
gain my again be determined by decomposition of the closed-
loop function. The low frequency asymptote of the closed-loop
function lies along the zero-db line and the high frequency
asymptote lies along the high frequency asymptote of the open-
loop function. At the frequency 'at which the "typical" zero-db
line intersects the I G(-a)Idb curve where 4G(-a) = -1800, there
is a closed-loop real pole, with magnitude 1/TCIL. The negative
slope of the-asymptotic approximation therefore changes here by
-20 db/decade. Using, this change (decrease in slope), the
asymptotic approxination can be continued back from the high
frequency so as to intersect the low frequency asymptote.
This intersection gives the undamped frequency of the closed-
loop quadratic factor, aCL. The damping ratio then may be
deteriined from the sum of the roots formula:

(+ b
CL' 2OL\ TCL/

Again, the closed-loop roots for a given value of gain are com-
pletely determined by simple operations on the logarithmic plots
without the necessity of repetitive trial-and-error mnipula-
tions. When several such are combined, the Bode root locus- of
Fig. 3-30 results (here a=1 and b =5). The branches are again
numbered to correspond with the conventional root locus shown
In Fig- 3-17.-

Now that the several examples have been worked out using both

conventional and G(s) logarithmic methods to find root locus plots for

the\ closed-loop system, it should be apparent that, as a practical matter,

the feedback analysis problem can be attacked in either way. Each method

does, however, present some difficulties when used alone. For instance,

the calculation of breakaway points or all the roots compatible with a

given gain is tedious in conventional root locus; and the determination

of closed-loop quadratic factors using the logarithmic methods can be

equally tiresome if decomposition is not completely applicable and

auxiliary shifted Bodes must be constructed. Fortunately, the awkward

or difficult aspect of one technique is usually a strong point of the

other, so the methods tend to be highly supplementary. Consequently, for

many practical problems an intermix of techniques often provides the most

effective and efficient solution. Since the best combination depends on
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.1 .2 .4 .6 .81 2 4 663 0

IG(iji)Id.

IKdb

(log scale)

Fig 30. Bode Root Locus for G (s) =K/s (s + 1)(s/5) + ]

the specifics of a given problem,, an example provides the simplest way to

illustrate some of the possibilities for joint use.

Consider an an open-loop transfer function given by

[(11s)I2 + 2(0.1ys +

G(s) k75=-
2 __ 2. )

6 +2(0.) 2(0. 1]

16oo IS2 + 2(0.1)(7.5)s- + (7.5)2]

s~2+ 2(O.1)(1O)s + (10)2][r.2 + 2(O.1)(15)s + (15)2]
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The first step in the solution for the closed-loop roots is the
construction of the asymptotic IG(s)Idb plot (Fig. 3-31). The

i departures from the asymptote of 1G(-a)Idb are then added, in
the immediate region of crossover, to establish the value of
the one real root, c = -4.4. Portions of the closed-loop
asymptotic plot for IGcr(s)Idb can then be found. These include:

1. The low frequency asymptote, a-b, which extends from
zero to 4.4

2. A mid-frequency asymptote with a -20 db/decade slope,
b-c, going from 4.4 to the frequency (7.5) of the
complex zeros

3. Another mid-frequency asymptote, starting at c and
having a slope of +20 db/decade reflecting the
+40 db/decade increment due to the complex zeros

4. The high frequency asymptote, extending back from f
with a slope of -60 db/decade

At this stage only one closed-loop factor is known, and only one
asymptote (of the two required) is available for each of the two
complex pairs remining to be found. To find the missing inter-
mediate asymptote, by far the simplest procedure is to construct
one branch of the root locus, and solve for the root when K= 1600
(K =4). This is shown in Fig. 3-32 where the high frequency
closed-loop factor is found to be s -2(0.123)(16.6)s+ (16.6)2.
The value of 16.6 for the undamped natural frequency establishes
the point e on the high frequency asymptote of Fig. 3-31.' The
final intermediate asymptote is then constructed through e with
a slope of -20 db/decade. Its intersection at d with the
+20 db/decade asymptote from c determines the value of the final
undamped natural frequency, 8.8. This undamped natural frequency
can also be found using the product of the roots relationship
(Rule 13, Eq. 3-17). The fact that all the roots must sum to -5
per Rule 10 is used to determine a value for the last remining
damping ratio. Thus, the final result for the closed-loop
trunfer function is "_. s \2 +2(0.1)s, +1

Gcr(,V) 6 \2sO. ) 2(0123)s
(11-T, + 1) kU7. ')2 2 026 S+ 1] [(--'-.) - 2 0 16.6 + 1]

The closod-loop transfer function obtained using this inteirated
giuphical procedure compares favorably with the more precise
version:

2 + 2(0 .1) -r +

obtained ( (.1\2+1)[( -"r)+ 2(0262)s +1 [( ) 2(0120)s

obtained by factoring the characteristic equation. The numerical.
differences are, of course, due solely to the graphical processes
involved and are not fundamental.
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This last example nicely illustrates the efficiency gained by adopt-

ing an eclectic viewpoint in which all available feedback system analysis

methods are used in concert. It can hardly have escaped the reader that

the ties between the conventional root locus and the G(s) logarithmic

plots are extremely close. These have been emphasized by the contour

maps and the isometric views whose sections would amount to mgnitude

G(s) logarithmic plots except for the distortions accompanying the use of

logarithmic abscissa scales. Such "distortion" is only a matter of con-

venience to achieve the very valuable asymptotic and symmetric properties

exhibited by the G(s) logarithmic plots, and does not constitute anything

fundamental.

The common -bonds revealed by the various forms of the open-loop

transfer function have their origin in potential theory. G(s) may be

expressed

G(s) = +(,, jco) = IG.¢,)lejq)(aaJ

(3-23)
= U(a.,a) + Jv(Oa)

where IG(c,u) 12 = U2(a,) + V2 (c;cO)

q)(a.Q =tan;-

and in G(s) is given by

1n G(s) = I I G(aow) + j(a,w) (3-24)

G(s) is an analytic function for all values of s except those which

correspond to poles and zeros. Consequently G(s) and lmG(s), or their

real and imaginary components in Eqs. 3-23 and 3-24, will obey laplace'S

equation in the two variables a and o in all regions of the s-plane

devoid of singularities. Thus,

2  e 2U

V2 v(cf),) = 0

v2 ln IG(a,co)I = 0

v 2 (CaFC) = 0
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While In IG(cn)I obeys Laplace's equationo, IG(co)l and ei((OA do not.
(This points out the theoretical basis for the use of logarithmic nagni-

tudes in the isometric plots. The fact that Iaplace's equation also

describes a wide variety of physical phenomena suggests that physical

analogies be used to help delineate the connections between the various

forms of transfer function representations.*

As one such analogy, consider the s-plane as an infinite sheet of

uniformly conducting resistive material. The open-loop poles and zeros

can then be represented as point sources and sinks of current, placed at

the pole and, zero locations, with strength proportional to the order of

the pole or zero. At any point s on the sheet the potential O(s), meas-

ured with respect to the potential O(so) existing at some reference

point so, will be

f(s) c in (5-25)

Similarly, the current, i, flowing across a path between the two points

will be

c q(s) - T(so ) ( -26)

so that the lines of constant current in the s-plane correspond to lines

of constant phase.

*V. C. M. Yeh, "Synthesis of Feedback Control Systems by Gain-Contour

and Root-Contour Methods," Trans. AIEE, Pt. II, Vol. 75, 1956, pp. 85-95.

P. J. Daniell, Analogy Between the Interdependence of Phase-Shift
and Gain in a Network and the Interdependence of Potential and Current
Flow in a Conducting Sheet, Ref. B39, Ministry of Supply Servo Library,
1 942.

A. R. Boothroyd and J. H. Westcott, "The Application of the Electro-
lytic Tak, to Servo-mechanism Design," Automatic and Manual Control,
ed. A. Tustin, Butterworths Scientific Pub., London, 1952, pp. 87-103.

M. W. Fossier and H. A. Rosen, "A Field-Mapping Method for Analysis
and Synthesis of Linear Closed-Loop Systems, "J. IAS, Vol. 20, Mar. 1955,
pp. 205-209.

H. S. Tsien, Engineering Cybernetics, McGraw-Hill Book Co., Inc.,
New York, 1954, pp'. 6-58.
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Applying this analogy to the elementary third-order system, the

three poles would be represented as unit sources of ciurent located at

a =0, -aL and -b, as shown in Fig. 3-33. This figure also shows the

results which would be obtained by measuring the potential along the

a and jw axes,and along the line s = ( E+Ar, _ i)IA - FromEq. 3-25

it is apparent that these potential functions are proportional to the

open-loop logrithmic amplitude ratio plots for s = a, jwn, and

H + JV,-t21)sL, except that the abscissa is in linear rather than

loarithmic units. They correspond directly to sections through the

surface of Fig. 3-19. Lines of constant potential form the constant

gin lines on the contour sap of Fig. 3-18, and the isoargument curves,

or lines of constant phase, correspond to constant current flow lines.*

S OOM B M CHARAC ISTICS AND ITEAL, APPRWWM YACTE

In almost all flight control problems the open-loop transfer functions

are of very high order, with m +n seldom less than four, more often of the

order of ten, and occasionally as large as twenty or thirty. The tech-

niques described in the previous sections still apply and, in fact, are

in everyday use in the analytical design of flight control systems. But

inevitably the price of complexity in analyses is a reduction in the

physical appreciation of the essential nature of a problem, and an

accompanying diminished insight into potential solutions. Fortunately

there are two counters available. These are the concept of the simpli-

fied or equivalent system and that of literal approximate factors. Both

concepts can be converted into practical reality by the application of

the feedback analysis techniques summarized above.

A simplIfied system is, in essence, a lower order approximation to

a higher order system which is valid for specifiable conditions. Literal

approximate factors are approxinte expressions for transfer function

*Similar analogies can be made with fluid dynamic, gravitational,

magnetostatic, elastic, or electrostatic potential problems. For two-
dimensional irrotational flow of an, incompressible fluid, for example,
the poles and zeros are aeain sources and sinks, in IG(cra I is the
potential function, and p( a,o' is the stream function. Phase loci
become streamlines, and the root locus is the one-half streamline.
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poles and zeros in terms of the basic parameters of the system, defined

only as symbols rather than as numbers. Their most important application

in flight control is for aircraft transfer functions, for which the

approximate factors are expressions which relate the poles and zeros with

the stability derivatives and inertial properties of the vehicle. Typi-

cal examples of simplified systems and approxinate factors will be

described below to introduce the key notions; many other examples will

follow throughout this book.

Siplified or Equivalent ystems

As long ago as 1939' the feedback systems analysis pioneer, H. W. Bode,

considered two central concepts in his mathematical definition of feedback.

The first was the idea of a loop transmission, or return of output to input

measured by a "return difference"; and the second was "sensitivity," or

effective reduction of open-loop system variations when seen in a. closed-

loop context. On the surface, these two concepts might be considered as

a cause-effect pair, but both are equally fundamental in either an

analytical or physical sense. In fact, Bode's "matheatical definition

of feedback"* had the two entities the inverse of one another, and subse-

quent writers have redefined "sensitivit% 'so that it, as a physical

measure, is identical to the "return diffe-,ence." The point of bringing

this up is not to give a history of feedback system definitions, but

instead to focus attention on sensitivity as a fundamental concept

inseparable from feedback systems. In a gross sense, if there is no

reduction in the effects of open-loop system variations on closed-loop

behavior, there is no feedback worthy of mention; whereas large feedback

can reduce such effects to negligible levels. This limiting case of

large feedback leads directly to the equivalent system concept, for if

changes in certain open-loop parameters have no appreciable effect on

closed-loop behavior, the open-loop system can be replaced by simpler,

albeit approximate, descriptions which yield substantially the same

closed-loop results.

*H. W. Bode, Network Analysis and Feedback Amplifier Design,

D. Van Nostrand Co,, Inc., New York, 1945.
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To make these reirarks more concrete, consider the elementary feedback

system shown in Fig. 3-34:

eRs E (s) Gl(s) CIs)IT

Fig. 3-34. Elementary Feedback System

The closed-loop transfer function, Gcr(S), is given in terms of the open-

'loop transfer function by

GCcr(s) = Gs) (3-27)

=+cr s

The classical "sensitivity" function, SG (s), which measures the relative

effects of open- and closed-loop changes, is (where Gcr(s) and G(s) are

analytic),

cr. "r "Gcr(s)

G' dG 1 + G(s) (3-28)

It provides a comparison between the relative change in closed-loop char-

acteristics and the causative relative change in open-loop characteristics.

Now, when feedback is really operable, sensitivity, from the discussion in

the paragraph above, must be very small, i.e., the percentage change in closed-

loop characteristics must be much less than the percentage change in open-loop

characteristics. This implies that G(s) is very large, which also implies

that

Gcr(S) " 1 IG(s)I >> 1 (3-29)

When this condition applies the closed-loop Gcr(S) is insensitive to the

precise form of G(s) in the re--n of's where IG(s)I >> 1, so the actual G(s)

could conceivably be replaced by a simpler form in this region, On the other
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hand, when IG(s) I is not large relative to one, the sensitivity approaches
one, Gcr(S) approaches G(s), and such a replacement cannot be made. All

of these esoteric remarks amount to the obvious, i.e., that

1 when s is such that IG(s)l >> 1

Gcr()4 =i (s) when s is.such that IG(s) =(I) (3-30)

G(s) when s is such that IG(s)l << 1

Viewed anothe' way, the relationships of Eq. 3-30 essentially ,partition the

s domain into regions where G(s) needs to be specified with little accuracy

(IG(s)I >> 1), or fairly good accuracy [IG(s),l =O(I) or less] if the closed-

loop G (s) is to be known to a reasonable approximation.

This function of feedback can be used to reduce the analytical com-

plexity of practical problems. The basic idea -is to replace the actual

controlled-element transfer function (or equation) with a far simpler

approximate transfer function (or set of equations) which would yield

approximately the same closed-loop results. The simpler- "equivalent

system would then be suitable, for use in many calculations.

To illustrate the procedure ,for equivalent system eyolution, consider

the concrete example of a high performance pitch attitude autopilot. As

will be more thoroughly described in later chapters, the vehicle transfer

function and a sensor-controller transfer function might be described by

the following open-loop transfer function:

Equalization

G() K(T9 1s + 1)(Te2s +i1) (TES + 1)1t s 2 2 sp + -IG(s) -- K 2a (3-31)
s + = + + + --

[g2 Op I r.I p [(C Ma

Phugoid Short Period Sensor and

Servo Actuator

- Y-
Vehicle DynamIcs Contioller
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Open-loop G(jw), and G(-a) Bode diagrams of this sytem are shown, in

Fig. 3-35, with values for equalization, 1/I, and open-loop gain, set

within ranges compatible with a "good" system. The complete open-lo6p

system amounts to a controlled element (vehicle plus controller) equa-

tion of order six. By, the direct decomposition technique of Unified

Servo Analysis, the closed-loop transfer function will be

(3-32)
K (TOs + 1)(Te2s + 1)(TES + 1)

Gcr(S) I ... K[ 2'a) i +Kz (T'1s + 1)(T02s + 1)(TX s + 1)(Tcs + 1)[( 2 45

For the condition shown, the cl6sed-!0op denominator factor (T'-,s + 1) is

very close to the numerator factor (TolS + 1).

If K is much greater than one, the amplitude ratio in the entire frequency

region to the left of about 1/T02 will be much greater than one (arid, in particular,

IG(ja)I >> 1). This suggeststhat the open-loop systeii could be approximated

by the transfer function

KTel 2 (Te 2 s.+ 1)(TES + 1)61(s) " 0333

d +ZP + ][+(+

Lr+1' sp ±2 or

The closed-loop transfer function formed from, thLs equivalent system,

IGI/(1 + Oi):I, will be almost identical to the exact closed-loop transfer
function given ,by Eq. >32. The major difference will be that the closed-loop

d.c. gain is 1 instead of K/(I + K), and the nearly canceling dipol.e pair,

(Tel,S + 1)/(TObs + 1), will not appear at all. When ]Kidb is 20 db or so

these effects 'are trivial. The equivalent system is of order 5, which is, one

step in the right direction.

A further step can be taken by noting that the complete closed-loop system
denominator factors (T 2s + I)'and (T's + 1) are not far removed from the

numerator factors (T02 s + 1) and (TL;, + 1). Their proximity makes them act

as dipole effects, An the closed-loop system response, i.e., the modal response
4!

-2|
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coefficients for the modes correspording to Tp2 and TE are relatively small

because of the proximity of these time constants to T02 and TE, respectively.

Thus these modes in the closed-loop system response will be minor, if not

negligible. To the extent that they can be ignored, a further equivalent

system can be defined. This will be

K T T 2 2

G20) e2  sp (334)
r 2 2ts

S + 'a- +

Equation 3-34 is a striking reduction in dimensions to three. The resulting

closed-loop transfer function will be

G2 I 1

Tel's 1 + "---. +

Except for the absence of the two dipoles and. the very low frequency

effects, this closed-loop transfer function differs from that of Eq. 3-32

primarily in that Tel will be slightly greater than Tc, and Woi slightly

less than wl. However, the range of validity based on use of Eq. 3-34

will be considerably narrower than that based on the higher order

equivalent system approxirmation given by E'q. 3-3k.

For some problens the eq.ivalent systems given by Eqs. 3-33 and 3-34 can be
further si p.fied. For low-pass inputs the najo. gross effect of the h.'hes-
frequency modes, assunIng tehat they.are well beyond the crossover frequency,
is an,. . tize delay. This can be ....o -n't by noting that all high
frequency lcads and' Jlas havi'r.g break y oins beyond a given recaency aOct

the ch racteristics below t-hat freqency priarily in the phase shift. Thus,
if the actual systemls hih IA.ency characteristics aro

n
I. (Tis + 1)

Gi(G) - (3

-h3-6

ri (' as + i
i
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the contributions of these terms to the amplitude ,ratio and phase at frequen-

cies, a), much less than I/T i and 1/Tj are

IGhi(J) I 1i " 1

n M

Ghi(jw) = tan-' Tim - tanr1 TiCD (3-37)
i i

These are the same contributions as those of a pure time delay, eiJn, where

T = Ti - xi. That is, for low frequency equivalence the delay T is Just

the sum of the high frequency leads minus the sum of the high frequency lags.

For the illustrative case, the servo is the only term for which this type of

approximation might apply. In this case T would be -2ta/c a so the equivalent

systems, for low-pass inputs, could be further reduced to

(KTo 1 )(Te2s + 1)(TEs"1) e ((2t a /~s....
(s)s,2 +

%P J
(KTO1T02T p /qO) -

and G2 (s) "- e(2a c  (3-39)

Having gone to this extreme, one further step is easy to take to obtain

an even lower order set of systems formed by negJecting the minor high fre-

quency effects entirely. This will often lead to better approximations than

the fairly major shift from the first to the second equivalent systems in the

first place. In other words, the G, (s) shown in Eq. 3-8 without the e - (2tos/r)

term will ordinarily be a better approximation to reality (and of no higher
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order) then the G2 (s) show.n in Eq. 3-34. Indeed, a form

(KTe91a)(Te2 s + 1)(TEs + 1)
G 1 (s) 2 tsps 1

s + -ap +1

is ordinarily a very good approximtion for problems of pitch attitude

control.

literal Approximate Factors

Transfer functions are totally specified, with the exception of a
multiplying, constant, by their poles and zeros. The poles an'd zeros are

functions of the system's constants, and are therefore directly affected

by changes in any of the constants. Because of the intimate relationships

between poles and zeros and the system constants, an extremely important

prerequisite to a rational system design- iS an understanding of the

effects of changes in the physical system configuration (as reflected

by the system constants) on the transfer function poles and zeros.
Unfortunately, in complex systems the transfer functions are made up

of ratios of higher order rational polynomials, which are difficuilt to

factor in general and meaningful terms. In airframe transfer functions,

for example, the polynomials involved are largely of third or fourth

order, having coefficients which are complicated functions of the stability
derivatives. The usual approach to determination of the effect on air-

craft motions of varying the airframe configuration requires numerical
values fox, the derivatives and is ordinarily a time-consuming and irksome

computational task. To alleviate this situation we would like to have

some relatively simple, albeit approxirate, expressions for the poles and
zeros in tens of literal aircraft stability derivatives. But the deriva-

tion of approxinmte factors depends very strongly on the relative agiii-

tudes and signs of the various polynomial coefficients, raking approxi-
mations difficult to deternine and the degree of approximation difficult

to assess. One wy out of this seeming quandary ic the use of servo

analysis methods where, in general:
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1. An algebraic equation can be mnipulated to have the form
of a feedback" system with:

a. The open-loop transfer function given by G(s)

- b. The closed-loop transfer function given by
- G(s)I[l +G(s)]

c. The charp-cteristic equation 1 +G(s) = 0, identi-
cal to the original algebraic equation

Then,

2. All of the servo-type methods for solving for the roots of
1 1 +G(s) = 0 from a knowledge of G(s) are applicable to the
determination of factors for the algebraic equation.

and, in particular,

3. A Bode plot representation, where wide regions of a graphi-
cal representation of G(s) can be approximated by asymptotes
having simplified equations, can be invaluable. The
asymptotic and other properties of the Bode plot make the
regions where simple approximate solutions apply quite clear.
Further, since exact solutions are possible using the plot,
the degree of error involved in a particular case is readily
determined.

Although a quadratic is trivially simple, it will serve to illustrate

the details of this "equivalent servo" technique for approximate factor-

ing. M&ny more complex examples appear elsewhere.*

The second-order equation

2", 2 , -
s2 + 2tjs + ay, 0

can, of course, be factored exactly, i.e.,

(s+ %= o

When dealing with transfer functions containing second-order terms with

< 1, the unfactored form is usually suitable as is, while the factored

form is called for when t > 1. When t2 > 1, the factors become

•1. L. Ashkenas and D. T. McRuer, Approximate Airframe Transfer
Functions and Application to Single Sensor Control Systems, WADC-TR-58-82,
June 19ol9.
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appro.%in.tely

[S+ k% + !!n +

which, as t becomes Jarger still, approaches (s +2tbn)s. The degree of

adequacy of these various approximtions can be seen readily by cobsid-

ering the second-order equation as the characteristic equation of the

closed loop system shown in Fig. 3-36.

- (S/Wn) [0' s)+ I

Fig. 3-36. Closed-Loop System with Closed-Loop
Transfer Function [(s/a )2 + (2ts/a).)+ i]"1-

Because only the real roots will be of interest here, only thp

a-Bode need be used. This is shown In Fig. 3-37, with the abscissa

normalized to ac%. For - > 0 the phase, although not shown, will be

-1800 over the range 0 :_ a/c 5 2t. Relating this plot to the previous

approximations, one can readily see that any value of the "gain," 1/2t,

which results in an intersection of the zero-db line with the amplitude

ratio curve when it is near the low frequency asymptote will give a root

mgnitude which is approximately

1 or
2t ao 2t

Also, the magnitude of the 3arger root can be seen to approach c2 /c n = 2

as t becomes very large (gain very smu].l). Since the system total damp-

ing, 2ta ,) is constant, the sum of the two real closed-loop roots must

always be -2tah; therefore the mgnitude of the second rool will be given

by n
a2 "
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as long as an intersection of the zero-db line and the amplitude ratio

occurs near the ir frequency asymptote. The error involved, in the

approximate roots becomes increasingly larger as the intersections of

the amplitude ratio and the zero-db line depart further from the low

frequency asymptote. The error will be a maximum at open-loop gains

where = I, i.e.,, at the breakaway condition. The exact root magnitudes

in this case are both to, while reliance on the approximations would give

01 = w/2 and a2 = 3w/2. In all cases it should be noted that the errors

involved in the use of the approximate roots can always be determined

readily by noting the departure of the actual amplitude ratio from the

asymptotic plot at the point-of intersection.

1/2C~

Typical 0 db Line

0db Line for
22

0 dbLine for Ljl

Log Scale

Fig-. 3-37. a-Bode Diagram for G(s/c. ) - i
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It often happens in the design of feedback control systems for

vehicles that the system cannot be conveniently .represented by single-

loop block diagrams. Until comparatively recently, this made the pencil-

and-paper analysis of vehicular control systems either oversimplified or

entirely too difficult, and the most usual approach to the design of

multiloop systems was repetitive analysis using the analog computer as a

tool. Complete dependence on an analog computer, however, does have

deficiencies. First, because of the dominance of only particular modes

in the time histories, modes which might be of great importance under

slightly changed conditions may be effectively suppressed. Then not only

will these modes tend to be overlooked, but their variation with the

governing parameters will be difficult to evaluate; accordingly some

understandig of the over-all perfonance of the system is lost. Second,

elements described only in frequency response terms, such as subsystem

and human pilot describing functions, cannot be used directly in computer

operations. Third, end perhaps most important, all problems solved by

computer can provide only specific results which, in the absence of a

suitable theory, cannot be readily and effectively extrapolated to differ-

ent conditions or generalized. Thus gross trends and grand simpifications

are harder to come by, insight is constricted, and initiative is stifled,

as always happens when only a single appr~ach to a problem is used.

To surmount these deficiencies we should like to have a multiloop

aiilysis technique with the following properties:

9 A formulation which clekrly dispays vehicle-a.one and
controller-alon(1 d-iaracteristics in .convntional and
well-understood 'terms

* Analytical operations which can be performed usIng the
most efficient graphical techniques of servoanalysis
so as to enhance transfer of skill and intuition from
the simpler single-loop situations

Sequences and procedures which are highly responsive to
physical insights and intuition so as to lead to "good"
systems with a minimtum of iteiation

* A prosentation of resul.ts which is supplementary as well
as equivalent to the results obtained using an analog
computer.
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The elements of such an analytical technique are presented below for a

fairly simple case. Detailed developments for more complex systems are

given elsewhere,* and specific examples which elucidate the use of the

method are deferred to later chapters.

A generalized notation for vehicle and controller transfer charac-

teristic quantities is introduced and used throughout this development.

A compact matrix formation is appropriate for multiloop problems, and

this is employed from the outset; but, to make the developments easier

to follow, explicit equations in natrix form are used concurrently ,with

the more compact natrix generalizations. This makes possible an induc-

tive approach wherein the natrix equations are both a shorthand for the

equations of relatively simple systems and, viewed more broadly, the

appropriate equations for far more complex systems.

Development of Closed-Loop Transfer Functions for Mulitiloop Systems

A multiloop vehicular control system which is relatively simple, yet

complex enough for our present purposes, is shown in the block diagram of

Fig. 3-38. It consists of a vehicle and control equipment comprising

sensing, equalizipg, and actuating elements. The vehicle has three inde-

pendent degrees of freedom, and is subject to control forces and moments

applied by two control deflections and ar external disturbance. The con-

trol deflections are functions- of a comnimnd input and feedbacks from two

of the three degrees of freedom.

Tle laplce-transformed linearized equations of motion of the vehicle

can be written in matrix form as

a 21(s) a2 2 (s) a 2 3 (sX 2(s) 2 1 (s) b2 2 (s) I I + e2 1 (s) e22(s)lk 2 (s)j

a31 (s) a32(s) a33(s) X3 (s) b31 (s) b3 2 (s)J e() (s)

(3-4o)

*D. T. McRuer) I. L. Ashkenas, and H. R. Pass, Analysis of MultiLoop

Vehicular Control Systems) ASD-TDR-62-1 014,, Wrght-Patterson Air Force
Base, Ohio, Mar. 1964.
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or, more compactly,

LAS] Xs] [Bs][8si+ Es)[n)](34f)

The aij, bij, and eij are, in general, functions of -and the vehicle

characteristics (stability derivatives), but to g6 along with the economy

of notation of matrix methods, the funutional dependence on s ,of these

quantities and the various transfer functions is not indicated in the

reminder of this section.

The vehicle transfer functions for control or disturbance inputs are

fotd from Eq. 3-40 by Cramer's rule. Typical examples are:

bl, a12 a 1 3

b2 1  a2 2  a23

xi b.X1 N5 31 a32 a33
-- 1 = a= , (3-42)

A all I 8a12 al13

a 21 a22 a23
a 3

1  a32 a33

N a11 b1 1  a 1 ,

- a 2 1  b21  a2 3  (3-43)

a31 b31  a33

In these transfer functions A is thu determinant of the coefficientd of

the left side (characteristic determinant ,f 'the vehicle),

a,11 a12 a 1 5

A '21 a22 a 25  (3-44)

a31 a32 "33

xi
and the nuerator, N6i is obtained by roplacing the colum- of xi coeffi-

cients- in A by the column of 5j coefficients from the right side of

q .110.
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?wiu. thre4= bde Orm kic wolturlcr c axe Ak-tr b

I, K :[ k 12 i H2 (345)

or' [5] [Ga [iXc] - [G][x] (3-46)

where [G,] will be called te command matrix and [G] the feedback

mtrix. The subscript convention used to identify the components of G

is that the first number identifies the controller output (control sur-

face); the second number the controller inputw (sensed motion quantity).

Equations 3-4.1 and 3-46 can be, depicted as the deceptively simple matrix

block diagram shown in Fig. 3-39.

Substituting Eq. 3-46 into Eq. 3-41 gives

[A]f[XI [B][5] + [E[j]

S[B11[Go1[X1- [oq'[x]l + [E][i.]

Collecting like terms,

I[A] + [B][Gjj[x] = [B][Gc][Xc] + [E]'[1f (3-47)

and, after premultiplying by the inverse of 1[A] + [B][GI], the

explicit expression for [ X] becomes

[x] = J[A] + [B][Gl -1j [B][Gc][X] + [E][n]1] (3-48)

Equation 3-48 is the formal matrix solution for the transform of the out-

puts of the closed-ioop system. It is not restricted to the equations of

the example, but is, in fact, applicable to systems with larger or smaller

matrices.
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tre Aetenrmnt of Uhe coefficients of the tirix ejxte;sIon

+A 4[ 1 C ]'will becor,& the circt~rictic function of the clos&I-loW
system, i.e.,

hj,;=det 1[AJ t IIBIII 13-4&9)

Tis determinant can be expanded in such a way as to explicitly retain

the vehicle-alone characteristics, which is a powerful advantage. Also,

the resulting expressions can be made amenable to the conventional servo-

analysis techniques described in the previous section. Thus, in the case

of the simplified system of Eqs. 3-YO and 3-45,

y =-det IjA]+ [B] lt

a11 + b12 G21  :a12 + blIG1 2  al ,

= a21 + b22 G2 1  a2 2 + b2 1G12  a 2 ,

a31" + b32G21  a32 + b31 G12  a33

(3-50)
=X2 Xl x2x

AX +- 0' + G21N82  + G12 G2 1N5102

Xi
and N 3 ha~ye the same significance as in Eqs. 3-42, 3-43, and 3-44,

A andNf),XiXk
while teifis of the form N81r2, called coupling numerators, are found by

replacing both the ith and kth colum s of the determinant of the left-hand

coefficients in Eq. 3-40-by the columns of 81 and 82 coefficients,

respectively. The awkward, but descriptive, symbol with two subscripts

and two superscripts is intended to suggest this rep]4:cement. For example,

b1l2 b1l al 3
x2x1

N5152  = b22  b21  a2 3 (5-51)

b32 b3 1 a33

XiXk

The coupling numerator N8 1 82 has no meaning when i= k, and is arbitrarily

defined to be equal to zero. The properties of determinants can also be
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S Xi Xk -

NE0162" 662n

XiXk 1 (jXiqXk .p.k
52"8 (3-54)ik

-02 bi1

For the most general 'case of two control deflections f'ed by each of the

three degrees of freedom, the system characteristic detefiiJlaint can be

shown* to have the form

3 2 Xi *xk
-- N = + iG kNG(3-5+)

i=1 J=1 i=1 k-1 B2

While the system charncteristic function, 6sys, is the denominator

for all closed-loop transfer functions, regardless of the command or

disturbance input, the numerator of a closed-loop transfer function will

depend on the particular command or disturbance.

The inverse Amarx, I + , which-appears in Eq. 3-48
can be expressed in terms, of the basic matrix by the standard form t

'~1: A421 A31 1LX11 A2 A63

IA I= 3 2s (3-56)

where the nnerxator is the transpose of the mtrix of the cofactors, and

the denominator is the determinant, of the basic mtrix, [A] + [B][G].

*Ibid.

tFor example, L. A. Pipes, Matrix Methods for Engineering, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1963.
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~zfor tlv exwaplc, bw -41 1e 1 1B IIG~(q -;)

a22 + b2 jG12  a23 (3-57)Ia32.1~0 Bbl2 a33j

is-the cofactor of (a 11 + blG1)in the determinant of Eq. 3-50.

For command inputs the other matrix involved in 'Ecj 3-4~8 is

B][ G X. For +he case at hand, the inatrix:multiplidCtion yields:

__ 6[ A1 bi2G210 + telb22G2 1 c+ 3 b,2G21 C
X1 c . dSys

G21cbl 1+ b2 2 2 1 + b23

bl2G11 a12 + bllG12  a

b2 2G21  a2 2 + b21 GJ2  a2 3

b32G2 1l a32 + b,3 lGJ2  a3

all + bl 2G2 l a1 2 + bllGl 2  a1 3 3-8

a21 + b2PG2 l a22 -+ b2 lG1 2  a-2 3

a a31 + b,2G21  a32 + b,1 G12  a3 3

This same result is, obtained, more directly but with less general. carry-

over to more complex situations, by the application of Cramer's rule to

Eq. 3-417 expanded to include the example matrix elements.* It is apparent

in Eq-. 3-58 that the cofactors, such a's All1, which appear in the numer-

ator are identical to' the terms which woul& appear multiplied by G21 in

the expansion of the denominator. Thus the ekpansion of the closed-loop

transfer function numerator can be inscribed by analogy, and the complete

closed-loop transfer function for a command input, xlc, becomes:
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lit~c1x2xI

i + 24 j 4 G13 b2)

-- - ' ( -0 9)

A similar developmpnt would yield the transfer function relating

the response, xI , to the disturbance. I1:

Xl xix 2
-- = ..... (340)

ilX2 Xl "I 3x2

Z + G1 2 5i + G21 + G1 2 G2 1 N528b,'

Here, of course, the disturbance does not go throueh the biJ66kG 2 1c to

get into the doubly closed-loop system. Therefore, the lead.ng numerator

term is not multiplied by G21c in this case. Note also that the term in

square brackets is identically zero.

The pattern which is evident in Eqs. 3-59 and 3-60 can be'dAscribed

by the following rules:*

1. 'The effective denominator is egual to:.

a. The open-loop denominator

b. Plus the sum of all the feedback transfer
functions, each one multiplied by the
appropria-.. numerator

c. Plus the sum of all the feedback transfer
functions taken two at a time, efch pair

' multiplied by the appropriate coupling
numerator

2. The effective numert0r is equal to:

a. The open-loop numerator

b. Plus the sum of all the feedback transfer
functions, each one mltiplied by the
,approprIate coupling numerator

*These rules are due to R. L. Stapl)ford. See Appcndix C of

ASD-TDR-62-1094, Anm12sis of Multiloop Vehiculfir Control Systems, Mar.
1964.
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w. The responses to a con. and input are obtained -from the
r matrix eqtution

r = [matrix of effectivei -1

IX] transfer f'unctions 1Gc[ J (061

In the comion situation where a c6nmand is only, fed to
one control, Eq. 3-61 xeduces to

Xi  vXjc transfer function) (effective 5 numerator)

Xjc (effective denominator

In Rule 1-b the "appropriate" numerator is the one with the sameXl1

output/input pair as the feedback, e.g., the product G21%82 is appropri-

ate to the specific exmple used earlier, while in.Rule 1-c the "appro-

priate" coupling numerator has the same two output/input pairs as the
feedbacks, e.g., G1 1  Rea11t2tN is zero (from the

properties of, determinants) if i = J or k = 1. In genersl cases with vany

feedbacks, stjveral of the coupling numerators will be zero.

In Rule 2 the "appropriate" coupling numerator is the one for the

output/input pair,-of the original numerator as well as for the feedback

output/input pair. For example, the feedback x2 -081 modifies the xi/bjxix2

numerator by adding to it the term, G1 8NE8p, and modifies the xi/ j numera-

tor by adding to it thv term G1 2N:j .

While the above discussion and the earlier derivations are adequate

for determining the comnand response with feedbacks to two independent

controls or the disturbance response with feedbacks to one control, a

:completegeneralization (foi- a three-degree-of-freedom system) requires

the" introduction of a second type of coupling numerator. In a type-two

coupling numeratqr, three columns of the, oen-loop characteristic deter-

minant are replaced by the appropriate control or disturbance coefficients.

A type-two coupling numerator'is zero if any two of'the outputs or any

two of the inputs are identical, i.e.,

1ixjxj (3-6)
N58b8 0xixijxj

N0)18, 0 (3-63)
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The rules for forming the effective- denominator and numerator are

generalized by adding:

1-d. Plus the sum of all the feedback transfer
functions taken three at a time, each combi-
nation, multiplied by the appropriate type-two
coupling numerator.

2-c. Plus the sum of all the feedback- transfer
functions taken two at a time, each pair
multiplied by the appropriate type-two
coupling numerator

It often happens tbat it is necessary .or desirable to feed back a

quantity'-which is a linear combination of terms in the variables which

appear in the equations of motion. Two alternatives are available. An

additional not linearly independent equation can be inscribed together

with the equations of motion, and developments similar to the previous

ones can be carried out, expanding the determinanvs 'which are now larger.

On the other hand, all the terms which arc required can be developed by

adopting a special definition for the wor& "numerator":.

Numerator a A (transfer function)

This definition does not, ias we shall see later, exclude the possibility

that a "numerator" can include a "denominator." For convenience the words

-will be used from here on as they are defined above, and the use of quota-

tion pnrks will not be continued. Then, for example, if,

= ax, + bx2 + cx 3  (3-64)

x4 X x 2  x , 65
N5  = aN8 1 + bN8 1 + cN5  (3-65)

and
X4 X1 aN x 1 1 1+ + cN X3X1 (3-66)
828 121] N82 1  281

etc. The term in square brackets is again identically zero. Otherwise

it is worth noting that the replacements indicated by the right column

of subscripts and superscripts are the same throughout the equation for

the coupling nwmer tor.
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lhotodrn- te Transfer r.ct.on
/

Retuning no, to the cash of the siriple exam)le, the transfer function

of Eq. 3-59 contains terms which are readily recognized as vehicle transfer

function numerators and denominators. Dividing the nume-ator and denomi-

nator by A, XI/XI can be expressed in terms of vehicle-al6ne transfer

functions.

x2x1

+ N8162
xl __ ___X___X__ __ __G21X1 1 4 Gi,,2
X2 N12 1

1- 2 ( 3-67)

G12 X251 + G21X I  + G1 2 N 1

where

- X1(s)

2 X2(s)

Since the term in braces in the denominator of Eq. 3-67 is identical to

the numerator, iti.mkes it easy to recognize that the open-loop function

N(s)/D(s) cor.esponding to the closed-loop function N(s)/[D)(s) +N(s)] is:

+ G12 -461 21 61

G2 1X1 582 ( 2

X1 I + 12X2 56

x2x

1 + G12  - "i

G21X1
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Equation 3-68 can-ibe reprcsented in block diagram form in a particu-

3arLy instrue-tive way. Figure -40 shows tbat the effect of feeding back

81-. 51 is to modify the X1 82 transier function of the vehicle so that

when the x I -,- 52 feedback loop is opened the "effective" vehicle trans-

fer function is X' and the open-loop function for the second loop

closure is G2 1X152. In this case, both the poles and zeros of X15 have

been modified.

The primed notation is used to indicate merely that one loop has-
-i82

been closed, and, by itself, it is not intended to specify the particular

loop closure which is involved. The meaning of the primed notation in

terms of which loops have been closed, therefore, depends on the local

context. Tater, the prime is similarly addeA. to individual transfer

function terms to indicate the number of prior loop closures.

Note here that since, typically., s appears raised to higher powers

in the denominators of G12X2 51 and G12 N41/N§% than in the numerators,

"im (G12X2 ) 1 0 (3-69)

and
x2 xI

lir G12  ) 0 (3-70)

so that the so-called root locus or high frequenny gain of 12 is

identical to the one for *2

We may also renark, in passing, that Fig. 3-40 shows particularly

clearly that the "modification" made by the first loop closure, x2 -0-81,

might be made in such a way as to compensate or "equalize" the open-loop

transfer function, G'-X 1 2 . This is. a thought to which we shall return

later.

Noir in order to make a)( analysis of the effects of closing the

second loop, x1 -'-82, it is first necessary to know the factors of X'

and finding the factors of X involves finding the factors of
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1 + G, given ti-,3 factors of G1  A B2 l

and of

1 + G12 -- given the factors of. G12  6Xl

Of course, these operations are relatively easily accomplished by con-

ventional servoanalysis techniques. They co.w ,espond to finding the

closed-loop roots of the characteristic equa2. ons for the feedback

systems of Fig. 3-41. Note that the roots of the "system" of Fig. 3541a

are the poles of X1' , while the roots of the "system" of Fig. 3-41b

become the;zeros of Bit

1682

N52 + G12N5I2 Closed-loop pole factors of (-

12 1 + G1 2N Closed-loop pole factor's of(

N 2 N 2

a) Closure ( b) Closure® ,"Coupling Loop"

Fig. 3-41. x2 Loop Closures Involved in the System, x " C- 8:x2- ;]l

If thL characteristics of the vehicle are fixed, G12 is the only variable

in both Teltionships. Thus, choosing G12 appropriate to either closure

or closure ® completely determines the characteristics of the other

closure.

The two loop closures considered here are further related, in typical

applications to aircraft, in that the high frequ1icy open- and closed-loop

asymptotes of systems ( and-® are often nearly identical, and therefore
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the "root locus gains" are nearly the same. This observation is easy to

appreciate because typically the terms of highest degree in s in the

expansion of A come from the produqt of main diagonl terms (alla2 e 2 3 ),

while the control effectiveness terms (bij) are usually constants. Then

at high frequencies, denoted as "Isi large,"

-i r3 _ b12a22a,3  (see Eq. 3-42) (3-72)2Is rge I la ge

~] 5  a(see Eq. 3-50) (3-73)
"8121 (b12621- b11b22)a33Illae

I I5 Js large sUg
and

1 l2 b21  b1 1b22 (3-74)

N xi a2_2  bj2a226 lsi large -IsI large

Similarly,,(Eq. 3-413)..

a1 1 2 1a3 -(375)
X21 I al lage 1 22 , sl large a2211I large

Quite typically for aircraft controls b21 >> b11b22/b12, so that in

general for large 101:

xyxl

N8 I__2 b2 1  b, 1 b2 2  * I X 1 (3-76)

Ali a22  a22b12  822

It is helpful to keep this fact in mind while actually raking the analysis

of the "simultaneous" closures for systems ) and ®.

When b2 has been found in factored form., the closed-loop system

characteristics can readily be determined by a conventional analysis of

the system of Fig. 3-)2.
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G2 Xl Xl

Fig. 3-42. Coaniand Loop Closure

In sumary, the steps involved in the analysis of the system in

Fig. 3-38 are:

1. The control channels are divided into two categories,
"inner" and "outer" loops, reflecting the closure
sequence. The x2 (or 51) loop, closed first, is thus
the "inner" loop; whereas the xI (or 82) loop, being
closed second, is the "outer" loop.

2. The "inner" loop, G1 -2X5 1 (D, Fig. 3-40), is closed with
tentatively selected equalization and gains, and the
closed inner loop roots are found. These roots become
tbhe vehicle's poles for the outer loop closure.

3. Using the same gain and equalization selected above,
i.e., thesame G12, the coupling loop (0, Fig. 3-40) is
closed. The closed-loop roots resulting from this closure

f become the vehicle's zeros for the outer loop closure.

I. The outer loop is closed in a conventional manner around
the modified outer loop vehicle transfer function.

5. Possible repetitions of Steps 2 through 4 with different
equalizations and gains my be required if the result of
Step 4 is not satisfactory.

3-77



3.6 sLEiTI¢ITy OF CLOSED-LOOP OOTa TO zY8LM PARAMLtIR VARIATIONS

We have thus far treated the system analysis problem for nominal

characteristics, inclading the determination of open- and closed-loop

transfer functions and tri.c responses., We turn now to consideration of

off-nominal behavior resulting from variations in the system parweters

from their assigned values. The many ramifications of this subject are

commonly encompassed by the name "sensitivity," referring generally to

the change of some aspect of system behavior due to some change in the

system elements. Because the sensitivity measures.developed here are

directly related-to the modal response coefficients needed in response

calculations, sensitivity and response factors become inseparable.

Therefore while this section is explicitly on sensitivity, it also

implicitly covers the calculation of modal response coefficients.'

Sensitivity considerations have long been of dominant interest in

vehicle dynanic and control system design activities. As noted in

Section 3.4, the "sensitivity" of a feedback system was originally

one of the bases for the mathematical definition of feedback. This

was natural since feedback systems possess the "fundanental physical

.property that the effects of variations in the forward loop, whether

they are taken as changes in G(s) or as departures fro strict linearity,

or as freedom from extraneous noise, are reduced by the factor 1/(I +G)

in comparison with the effects which would be observed in a system

without feedback."* The 1/(I +G) factor is the classical sensitivity
function, ~G~r(s), which compares the relative change in closed-loop

characteristics to the causative relative change in open-loop charac-

teristicS, i.e.,

dGcr(s)]

Ger(s) G+ (3-~7)
SGcr(  -G -(s) 1 +(377)

LG(s)J

*iI. W. Bode, Network Analysis and Feedback Amplifier Desifn,
P. Van Hostraud Co., nc., Ne7 ,k, 1915,i*p. i.
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Thus, the measure 1/(1 + G) indicates directly the reduction in the
* "sensitivity" of the system to many of the influences which would

otherwise tend to corrupt its perforjiance.

Although classical sensitivity has been a popular subject in

control topics ever since Bodo's origintal work we shall depart

from the classical view to emphasize newer conceptions of sensitivity.

These concepts are more pertinent\ here because they result in measures

which are directly related to the pole-zero description of systam

characteristics..* Te basic measures, called hero ' gain," "(open-loop)

pole," "(open-loop) zero," and "(pen-loop) parameter" sensitivities,

were evolved to determine changes in the position of closed-loop poles

due to shifts or changes in open-loop gain, poles, zeros, or other

parameters. In the simplest terms these sensitivities connect open-

loop differential variations with closed-ioop differential shifts.

The sensitivity factors can play A significant role in synthesis
as well as analysis activities. In and4ysis, as already remarked,

design calculations are inherently nominal'because the system assumed

in an analytical study can never precisely match the actual physical.

*K. Mitchell, "Estimation of the Effect of a Parameter Change on the

Roots of Stability Equations," Aeron. Quart., Vol. I, May 1949.

Ordway B. Gates, Jr., and C. H. Woodling, A Method for Estimating
Variations in the Roots of the Lateral-Stability Qar-tic Wue to Changes in
Mass and Aerodynamic Parameters of an A.'plane, NACA TN 3134, Jan. 19921.

A. Papoulis, "Displacement of the Zeros of the Impedance Z(p)
bue to Incremental Variations in the Network Elements," Proc. IRE,
Vol. 43, 1955.

R. Y. Huang, "The SensitiVity of the Poles of Linear Closed Loop
Systems," Trans. AEE, Pt. II, Vcl. 77, 1958, pp. 182-186.

F. F. Kuo, Pole-Zero Sensitivity in Network Functions, Ph.D.
Dissertation, UnW of Illinois, 1958.

H. Ur, "Root Locus Properties and Sensitivity Relations in Control
Systems," IRE Trans., Vol. AC-5, No. 1, Jan. 1960.

D. T. McRuer, and R. L. Stapleford, Sensitivity and Modal Response
for Single-Loop'and Multilofp Systems, ASD-IDR-6-612, Jan. 1965.

I. M. Horowitz, Synthesis of Feedback Systems, Academic Press,
New York, London, 1963.
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system. An assessent of the effects of system uricertainties Baxd/or

the iiplications of parw.qeter tolerhcEs thus becouifes a matter of great

concern to the designer. Sensitivity concepts, provide the direct means

to make such assessments. For s nthesis the use of sensitivity is -!nore

subtle. Practical control system.s usually require caqlex dynamical

descriptions and are expected to rmeet.)a variety of diverse and often

conflicting criteria. Because of this intrinsic canplexity, the inter-

relationships between the system parameters aid the diverse system

performance measres are always involved and 6ften obscure. Consequently,

system synthesis is invariably accomplished by iterative analysis. In

such iterations, 1Iowledge of the effects of parameter variations is of

great value in; detemaining appropriate modifications. The guidance

provided by sens'itivity factors can be used to suggest both ixiprovemeiit

in naninal sys/Jem characteristics§ and the red-oction of system sensitivity

to parameter Va' iations.

Our devclopmnent sequenco will first consider single-loop systems

with first-order closed-loop poles. The notions hcrc arc elementary

and easily traced, as befits an introduction to the subject. Ihis will

be followed by a more general development which subsuwies all forms of

root sensitivities for open-loop, single-loop, and multiloop systems.

Sensitivlties for Sindlo-Loop Systems

The single-loop .system open-loop transfer function has the form

n
s (s + zi)

p(s) . , .( -

jp1

G(s, K, r, pj)

The effects of small variations in the param1eters of G(s) on the closed-

loop roots can be found by starting with the total derivative ,of tht

closcd-3 oop characteristic Ainction, 1 + G,
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d( I+ G) dc

s n m+n
S-s ds 4- wK dV" +J= dz +" d G(3

j= J=1

No.. b6cause the closed-loop poles, Xi, are defined by the equation

[I+ G(S) 0 (3-80)

the total differential of Eq. 3-79: is zero at the position of a closed-

loop pole s =Xi . Sctt-bhg dG 0 0 and .s Xi in Eq. 3-79, and rearrhrging

terms gives

{d_ - dK -dzi + j .(8

[ s..xl i s=Xi

The variation, dli, in the closed-loop pole can be expressed in another

va r by noting that the closcd-loop roots depend only on the 6pen-loop

gain, poles, and zeros. Functionally,

X, = Xi(K, Zj, Pj) (3-82)

The total derivative, d1i is then

nx m+n

Cui = K + E W. d j Zjj pJ=1 J=1

n m4-n

S K zi+F ;dpj (3-83)
itij J=1
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As indicated in the last form of Eq. 3-83, the factors K(Z)iU/K),

,i/6zj, and 03 ,/ pj wr accorded a special sy'xbol, S. These are

the first order sensitiv.ty factors. The subscript and superscript

notation indicates that a diff'ecrential increment in the open-loop

parameter (defined by the subscript) results in a differential increment

of the ith closed-loop root (denoted in the superscript) 1.rhich is equal

to the sensitivity factor tines the open-loop parenctric variation.

By equating like coefficients in Eqs. 3-81 and 3-83

K ak/IK rG1 6

S=j - (3-84)

S~ ~ jx [G/ pi]sPj 6: .6tG/os~sx

Note that the gain sensitivity is basod on a fractional (percentage)

change in K, while the pole and zero sensitivities are based on

absolute shifts of pj and zj. These definitions were adopted here

'in order to provide some simplifications in relationships.

In terms of the open-loop trar nfr functi6n fonm of Eq. 3-78, the

gain sensitivity factor', remembering that Gk i) =-I, it,

s c/ ---7s=Xi L BJ=Xi

2 [G(s)]
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r Using Ec. '3-78,

KK +m s ;
Lds dsJ

or, since Kak)o ) -.3.

r d(s) 1(3-87)
K

With the factored form~ of E~q. 3-78,

n n ~m+n1 Mm1r

J=1 kk-1 JI
kjk~j J

nrn+n ]

so Sirn~ n - - n(3-88)

3-83



U~;ing E,,q,;. 3-78, 3-8), anm1 3-8k the zero sensitivity becomes

Using1 -. 1 1-8 3-).

S= S=16i

11

-Kfl (s + zk)

=si k~n ____z_

K nHf (s +Pk) sx
k=1

-Id ss + i Z j=

Si
K (3-89)

11(s+Pk( + zj)

Developed s.nj n:rly, the pole sensitivity will be

Si

si K (3-90)

Further examination and interpretation reveals- six interesting and,

useful properties of the sensitivity factors:

a. The gain sensitivity is a me.asure of the slope
along a conventional root locus.

b. The gain sensitivity is a factor in each of the
sensitivity terms. Thus, Eq. 3-83 becomes

i [dK n dz m+n p
41 SK K + E _' + z- E (3-91)
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c. The gain sensitivity is the negative of the modal.
response coefficient for the root X.. This will.
be shown Tfor the general case of Ith order
roots in the next article but will be taken for
granted here. Thus,

K - 1 (3-92)

Ibis equality is very useful since all of the
properties previously derived for the modal
response coefficients are applicable to the
gain sensiti.vity. Using this correspondence,
other formulas for the gain sensitivity can be
devfloped.

s- i)K 1 (s zj)
SJ=l 1, m=O

r+n 0 otherwise
1 +"K8,0 ) I"I (s+qj)

Remembering that Xi =-qi, and that Km()i)=--(oi),

n

-K 11 (X. +Z1 )
Si - J=1 (3-93)

K m+n
(1, +K5 0 ) r"[ (XI +qj)

j- 1

m+n

11 (xi -, pi)

m+n

J~r1
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d. Some combinations of gain sensitivities or modal
response ratios are simple fuictions of the open-
loop transfer function polynonial coefficients
and gains. These are colneniently developed by
natching coefficients in expressidns for the closed-
loop transfer function and in the partial fraction
expansion .* Among the relationships are the following
for m. 1:

imi1n 1
= SK- m. (3-9h,)

i=I i=I

m+n m+n

KQ I-K k- 0 (396)

i=I i=I
0 ,-k _n(-1

e. The 6ivn of all the zero and pole sensitivities for
each closed-loop pole must equal minus one. This
follows directly from Eqs. 3-.88, 3-89, and 3-90.
Thus,

n ± r+nE SZi + E S =-' (3-97)

J=1 J=1

This result is easi~y explained by recalling that
on a root-locus plot if all the open-loop zeros
ad poles arc moved. the same aount, all the closed-
loop poles will also be moved by that amount. The
minus sign Is because zj and pj are the negatives of
the open-loop zeros and poles.

*D. T. Mclluer,, and R. L. Staplefo-d, Sensitivity aud Modal Response

for Single-Loop and Mu3.t:iloop _Systems, AS!- -]anJ7T9-a 6. 7 1 9-.
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S. The gain scn.;: .vA.' a u:Vic the ze 'Ahes, evaIuoated
at the closec-loo' poles, oI the cla&sKca), sensitiva)y
sacr. This is a direct consequence of the relationsbip
between the mca). response coofficIents and gain
sensitivities.

msn %jS .-r _Ge r  "I- s+
Gi s+qi

m+n Bi

1 + T+_ 0 m z (3-98)

Evalmation %-onderc focr SccWt-v:Ior:

The evaluation of singlc-lop gain sensitivities, or modal response

coefficients, may be accanplishe in several ways. The fundamental

bases are the formu.as given by Eqs. 3-85, 3-86, 3-87, 3-88,. or 3-93.

All of these are appropriate for direct cuaputat:,on, vhich is probably

the most corraon means employed for sensitivity calculation.

Sone of the gain sensitivity equations arc readD).y interpreted

graphically in terms of vectors in the complex plane. Equation 3-88,

for example, instructs us to draw, at any point, Xi, on the locus of

roots, vectors directed tward the zeros and away from the poles of

the open-loop function, end inversely proportional in magnitudc to the

distance from Xi to the sing-ularity in question. Iie sw of. these

vectors show-s the direction of the locus ,with Increasing gain. A second

graphical method using vectors in the complcx plane is based on con..

ventional root locus constructions. The basis is Eq. 3-93, vwhich

involves a ratio of vector products. With a complete set of closed-

loop roots plotted on the locus this calculation can be quickly

evaluated, as 6xenmplified in Fig. 3-13. Te operations involved can

be accanplished particularly rapidly when the logarithi.ic spirl.

features of the "Spirule'tt are used as an aid. This is the method

*McRuer and Stapleford, Ibid.

tSec footnote, p. 3-9.
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:f jw

G K(S Z) ,j 4

a(X+ z) SK -Z

(XI q?-Q2(X x + C.,q,(.2

Fig. 3-43. Illustration of' Gain Sensitivity and Modal Response
Coefficient Calculations Using Vectors

frmi the Comp.eto Root Locus

most of'ten given f'or the graphical evaluation of the mdxll response

coefficients. 'Its disadvantngc ifor sensitivity calculations is that

it, requires a co replete set of campatible closod..loop roots plotted on

the locus.

Besidea these vector roms, soeniti'wities can be obtained from

any of the comion plots used in the mified servo analysis techniques

treated carlior in this chapter.* Nost of the mrc-hol1s depend on the

intcrpj.ctation of' Eq. 3-85 in terms o:r s.opcs from the paticui.ar plot
(e.g., J ¢tBole, convntional root locus, etc.) availa.ble.

WMin tbo complete set of conventional and Bode root locus plots

arc available graph.cal mcthod: using incremonts in the gain and closed-

loop poles o.f.v the sc &plest way to obtain a rapid appreciation of

scnsitiv..ty considerations. '11me direction of the gain sensitivity is
moSt easily doturminod from the conventional root locus, as it is

*McRucr and Stmplef'ord, Ibid.
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simply along the twi-ent to the locus. A close tproxination to the

imagnitude can be obtained, using the lodation of the closed-loop pole

for two slightly different gains, such as the sog.rent of a locus

shown in Fig. 3-Mi. • The gaiu perturbation method requires the loca-

tions of the closed-2oop pole for tvo sli tlr different gains, sUC'6

Gain K , w --.-.. + AO

S = Xi+ AXi sX+ AXi

0X1

AXX 1

s XI

Gain

a) Gain PcrtLurbtion b) Phuse Peturbatiorn

Fig. 3 .4. Root-Locus Perturbation Methods for Gain Sensitivity

as the segml-nt of a locus shovm .in Fig. 3-):a. Using finite, incremonts

as approkimations to differential changes, Eq. 3-84 gives

j ), K(AXi) (
iKK

Equation 3-99 can also be used if the change in the closed-loop pole i.

obtained by some other technique, such as from root deccnposition.

The phase perturbation mcthcd is based on considerie K to be a

complex, quantity. The normal root locus is then a graph of the closed-

loop pole locations for K real. Now consider a small perturbation in

the phase of K. The closed-loop pole must then be perturbed a small

distance normal to the conventional root locus, and the phase perturba-

tion of (C/K) mus t be inus that of' K (see Fig. 3.lib). Conserivont.'l,
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for poturtbtio:.:; iior:ml to the root .octiz, - v:/K / -jb, and Eq. 3'99
beecoes

d ) .i . \) I
SKj (3-100)

where AO phcase ch.angfe, in rad, of G/K

For the Bode root l-ocus ,a more natural scnr.,.tiv'lty factor is the

proportional change in th] negative oP the c.oed.-loop root, i.e.,

dqi/qi instoad of d)i. Con.sideri:bng gain Gen.Jitivity alone,

dqi -d. = -Si J.
KK

or (5ii

KKdr

= ... .. (3-101)
q i qi. K

where 1.11i is the sensi'tivity factor relating proportional changes in
'K

the negative ol the closed-loop pole, qi, and the gCan. Becaue

~idx/x --d 2: x, thie proportioni). seiLtivity, '4 K' W:L1l be

dqi/qi
K qi dKIK

d in q
d In 

(3-102)

The proportional. sensitivity can thus be estimated from the }Boac root

locus by considering small. increments about the nominal gain. For real

roots this wil. simply be the slope of the siggy Bode plot at qi. As

often as not this would be expressed in decades/dB. To convert to a

unit-less fonr of Mi w.e note that
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d(1o, 1  log10 efd In)

'decades/dB5 d(P0 lot, 0 K) 20 :Logl 0 e(d In Ic)

- K (3-103.)

Whel~n the roots are conpcx th3 miost co~r.venicnt qailities to measure

along the Bode root lociu. are increments in thc closed-loorp dunping ratio,

At, and logaritrnmic incremecnts, in the elosed-)oop natutral frcqueney,
Alncm and open-loop gain LT K. 1hese can rev.dily be relJated to the

proportional sensitivity. The negat-ive of' the closed-loop root in the

upper half' of' the s-p.16nc is,

s od q . q i a

clidt + j

The proportional scns:.tivity, N)K, will then bc

d In qi dql./qi
mK dIn K dIn K

+ -AL-

d In K VjF72 d in K(5o)
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The first term i conertCeO from docades/CIB by multipl,,ing by 20, just
as v:th flrmt-order tTh;e:. Thnemaginary part will us ua)..y be mac, sured

a El

A(20 log1 0 K) 20 logl0 e(A II K)

so

20 loge _ d
d in Kd('20 log 10 K)

8.6859 • (3-1o )
d(20 log1 o K)

The gain sens-it-L-:,.ty in theze term, wi... then be

r [20 d(log 10 O) 8.6,59 aL..

.0oit-,1 K1"-T d(20 1loK

(3A06)

Mhe pole and zeLco sensitIvities are casJJ.y obtained once the

gain sensitlviti, have be6n iomuid. A geometric appreciation As

ga.ned by considering these as vectors in the s-plane, as in Fig. 3-)i5.

No~e that the zero sensit.vity vector is in a diiection tend.bng to pull

the locus more to.ard the zero, ,hereas the pole sensitivity vector

would tend to push the locus away fro i the pole.

cc-vu le: Unit-nuiriotr third- ordcr rtYstcm

The analysis of the system

Gt s~ K
S(S + 1 )(S ""-5)
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Root
Locus

zsij

(XI 4 Zj) OX,+ Z,

J +7j tXi + ziIA 1j Xi + ijzj
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has boeYj eL ersove7 brcat.... on pp. 3-19 et seq., and 3-39 et seq.
A eoarplet. 'y.t..: survej," comprising bLock diagrin, G(jci) and
G(-o) Bode plots, e2id Bode and. conventional root locus plots is
given in Fig. 3-)'C. In this example we id.ili comrjiute the gain
sensitivities in several a:ays for illustration and as an indica-
tion of relative acu:ixacies.

,The gain is set so that a pair of coi.plex closed-loop poles with
'darping ratio of %-/2 exists. For this siituation the ir.portant
paramters are,

K = 31%F-6-- 156 = 2.070

ql = - 1j =%26 5.099

q2  -- = ± (6- 2)(-j) 0. h50(-j)

q3  -2- (6- %\ )(1+j) ( 0.h50(1 +j)

I Direct Clc, 1lation

Using Eq. 3-86 foe the numerator and deno:rdnator derivatives method.,

K 7C
(K

=0

= 3 + 6s 2 +5s

3S 2 + 12s + 5

Therefore,

Si -K- .
3X?' + K,2Xi + 5

Using the value for ) 2 give.

2 -3P76 + 7(01 + j(8 112 - 987 F6)

= 0.011yi + jOA90

0.1192 Y) 81 .47 deg
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Because 1.3 is the cc.;plex conjugate of' $ 3 is the complex
conjugate of s or 2$'P-

-3276 + 701 '.6 - j (811,P - 987 NF2)
SK 6290]

= 0.0471. - J.!o.90

= 0.492 4 -844.7 deg

i
Using the value of 'I in the equation for SK,

S1 3'2(6- 70120

The modal response coefficients are, of course, the negatives
of thetm sensiti-vities.

A; a chec:, rccall that if the niaber of system poles is greater
than the number of zeros by two or more (m> 2), then the swm of the
modal rcsponse coefficients or gain sensitivities is zero. These
conditions a-e mat for this example, and we can see that the
values do sum to zero.

The second method of direct calculation, called the sumation of
terms method, uses Eq. 3-88, i.e.,

Si 1K m -n n

Jj- j -J 1 -1j

These computations may be -performed in the following manner:

Pj (Pj + X2) 1. +12

0 .-0.15049 + J.4,9049 -1.1099 - ji.1099

1 0.54951 + jo.41 5049 1.0383 - jO.8922

5 11.59"951 + j0.di049 0.2177 - jO.0216

= .1961 -j2.O237

SK = O.Oh714 + jO.1i90 = 0.492 8 81.117 deg

S3 = 0.014 - jO.A90 = O.A92 Z8 1i.17 deg
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and

Pj (pj +x) Pj +

0' -5.0)902 -o.1961

11 . 0902 -0. P)0 0

5 -0.09902 -10.0990

-10.5391

= .09)19

The, results naturally agree with the first method because
both methods are exact.

The sensitivities to the poles at -1 and -5 are easily
computed from Eq. 3-90. For the poIe at -1,

S1 0"0919 =-0.0031

2 -(0,O0)7), + ; J 490) = -o.18(- J0.49h1
'$ 0.550 + JO.1, 5u

0.695 4 -135 dog

For the pole at -5,

1 0.091i9 =-0.959
' 2 -0.0990

2 -(o.ol,''7 + jo.J9o) -0.0208 - 0.1058§2 4.5 -5+ j0.450 =-.O0- .18

= 0.19(7 4 -101 deg

3-97



W1

2. Vector Mbcdl

Mhe vector 'method uses Eq.. 3-93. F,'or this exw.ple, the
equation reduces to

1 -KKl =(X 1 +" q2)- X'I +q3' )"

2 -K

K - _

The following were measured with a Sp~Irule:

+ q2( " q o.o59

(12 +  q- )2 yq3)  0. 237 4 --95.5 deg

which gives.

SK -0. 095P

SK 0.h90 4 84i5 deg

Theso values are ebremely close to the exact values. Both
anplitude errors are less than 1 percent, and the angular
error of SK is less than 1 deg.

3. Root-Locus Perturbation Methods

To estimate the gain sensitivity fran Eq. 3-99, a pertuzbed
position on the locus of -0.I + JO.76 was chosen. The
measured ga . at that point was 3.89. This gives an estimate
of

2 K 2  (-0.111 + Jo76) - (-0.15 + JO.15)]

s K  2.07 U3.89 - 2.07

- o.oi5 + JO.353 = 0.356 4 82.7 deg

which has a magnitude error of 28 percent and an angular error
of 2 deg.
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For S1 the point -5.I 2.vas selected as the povtrbeOd. value
of X, for which the gain i.ms 10.06. Then

1*2.o7[(-5.,,2-(- 3.i!)].
SK 1.06.-2. 0.083

Althoug1l the gain was increased to nearly 5 times its
original value, this estimate is i.ithin 13 percent of
the exact value.

To obtain estimates fran Eq. 3-100, perturbations normal,
to the locus Were considered. For Sk a perturbed X of
-0.4 + JO.117 was selected, for which the measured phase
change was -2Ai deg. Then

2 J 2  C(-o.6" + J0.47) - (-o.45 + jo.45)]
SK - 27/5.3

0 o.0177 + jo.454 = o.457 4 8h deg

For this estimate the anrplitude error is 7 percent and the
angular error is less than 1 deg.

ForS 1 a perturbed I of - 5.10+JO.10 was chosen. The phase
change was 47.5 deg, so

1 J(IJO.1o)(51t.3)
SK 4(50.1.1

This estmrite is in error by 27 percent.

. Bode Root Locus Increinents

The portincnt slope on the Bode root locus for the complex
root was measured as

2log K
1 39 dB/dece

A log a.-
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and a gain: dc--ee.Ae of 3.8 d.11 i, c::'c: , to 0.9 over
the original O. 0, o 0 .0O)','/3. T''e Ip'opjort:onalsensitivity (Eq. 3-1011 ) is then

2 d IncI)w d
dlrl

20 i0.2-+ (8.6086)

0.513 - JO.07

The convcntional Ca.in sensitivity is then

2 2SK,; - 1" X 4 , := (0.. 513 - J .0 6 ) (-- h 50) (1-,,i

O.o0o3 + JO.5.2

= 0.525 4 83.h deg

This is an error of about 7 percent in amplitude and 1 deg
in angle.

To obtain S! the slope of the high frequency branch of
the siggy is used. A slope measured from this plot is
-830 dB/decade, although the root is too close to the
open-loop pole to get an accurate value. Nevertheless,

10 2 ,"0 -0.02o

and

sK (-5.1)(o.o012.1) -0.1P3

This estimatc is about 29 percent highcr tihan the correct
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The jionituder of gain sensitivitics can cover the entire irange of

values from r inus to plus in.i.nity. Yet, intuitive notions of "sensitivity"

as a gener . conccpt in closed-loop systems make part of this rante appear

unreasonable. One part of the pr6blem is a direct consequence of the sen-

sitivity definition, while another is associatcd with its nature as a first.-

order approximation. A better understanding of both facets cW be gained

by an exutiination of lJaiting cases.

In general, closed-loop poles are close to open-locp poles for low

values of gain, and proceed to either open-loop zeros or unbounded values

as the open-loop gain becoies very large. Througbout this travel the gain

sensitivity is (Eq. 3-88 repeated here)

Si 1 __ ___K -. m+n (3i)".I
jr ijP p  .-_Xi Xi + z j

As K approaches zero, the closed-loop root, Xi), approaches the open-loop,

pole from which it derives, i.e., Xi - '-Pi" Then the term 1/(Xiq+pi) in

Eq. 3-107 is doninant, so

SKKT- -0 (3-108)
Xi + Pi

Similarly, as K becomes very large, n of the closed-loop poles approach

open-loop zeros. If the ith closed-loop pole is one of these, and it

approaches the jth open-loop zero so that Xi --,zj, then

-1S1  --_ -I -0(3-109)

Xi + z t

Finally, ni of the closed-loop poleos have no zeros to go to, and hence

become very large relative to the IpjI and Izj . Te sensitivity for these

poles is

3-101
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IzjIIpj l-  m =(3-110)

When the gain is sufficiently large for the open-loop zero IB line to

intersect the hilgh frequency asymptote, the open-loop transfer function is

approximatel.y
K

G(S)-

so that Xi will be

Xi (5-11)

Thus, the sensitivity, of the unbounded pole will oe

Xi > I 1 1-(3-112)

Equation 3-112 indicates that the sensitivity increases as the mth root of

K, as gain is increased, although for finite gains the sensitivity is alweys

finite.

Another circumstance in which the sensitiv:,ty can become very large is

revealed by Eq. 3-93. Here it is apparent thut the gain sensitivity for a

closed-loop pole liecomes very large as that pole nears another closed-loop

pole. Indeed, as Xi becomes equal to Xj, indicating a branch point on the

root locus, the gain sensitivity goes to infinity. This is to be expected

since the sensitivity factors defined thus far have not considered multiple-

order, closed-loop roots. As long as the gain is finite, an infinite gain

sensitivity always indicates multiple-order, closed-loop poles.

A special situation of considerabl.e interest can occur when a closed-

loop root lies between an open-loop pole and zero which are much closer to

each other than to all other open-loop polds and zeros. This is the so-

called dipole case. -The sensitivity for the bcanded closed-loop pole will

be, approximately,
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K li + Pi i + zi

('i + Zi)(xi +'p)
zT -oof

K .
bcomt~es

SImay =
' (pi-zi) (3-111;)

First-Order Root Scnltivitier, for o inortti Chacteristie Equatio .-*

We turn now to the general case ulhere multiple-order closedloop roots

are permitted, and where the open.-loop system parameters are, not conPined

to gains, poles, and zeros. To accomplish the generalization we shall.

repeat many of the steps involved, in the special case with first-order

roots only.

For linear constant-coefficient systems of nth order the system

characteristic equation can be written as

F~~, ] 0, ,2,.. (3-115)

where Xi is a root and o_, is a vector with components .j representing the

set of system parameters. Each component, caj, is nomii-Inally constant, but

potentially variable. 6pen-loop poles, zeros, ad gains are typical cj's,

although other system parwricters are a1so included. If Xj is c, first-order

root, the total. derivative of F will. be

OF = + v (0-116)dF = Z# -

*This article Is a shortened version of the paper: R. I.. Stap.ef6rd
and ). T. McRuer, "Sensitivity of Multiloop Flight Control System Roots
to Open-Loop Parameter Vw,-iations," AThA J., Vol. 4, No. 9, Sept. 1966,
pp. 1655-1661.



Whe,) Xi is at ] h order root,. F(s) has the forn (s - Xi )NF,(s). Then the

first 1--1 dcrivwativcs of F witi respect to s, uwhen evaluated at s = Xl,

beec.e zero. In this event the total differential given above must be

expanded to incorporate, the firsL nonzero higher order tenn. Equation 3-116

is then mli ied. to

dl? = '. I (d),, da 0 (3-117)

Equation 3-117 can be solved for dXi to give

Ai [.--.N.'(. ' -- '(s) acI (3-118)

os Om s =

This re.latEs d:Uferential changes, dj, in, the system -parameters to the

differential. change in a system root. Tie exp:ession can be written more

co'mpact.y by defPining parameter sensitiVities is-

i c(SF

The par neter scnsitivity, S, is made specific to a particular system root

by the superscript, i, while the pertinent system parameters, cyj, is indi-
cated by the subscript. lflIle it then has the same form as the previous

sensitivities, it is not yet totml.ly equivalent since the differential

increment in the, ith system root is given by

[i , J dmj] (3-120)
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Tihe p..'ic0cJ' sen.1AA-vities are pCi.. delrivativcs, so s;ifl.s in
system roots preclictod using the sonsitlviti.as crc only exacL in the lii'it

as the pai,nemter vaci.atkons approach zero. Yhe pracLical extent to which

this linear firsL-ordcr theory i.l pply cannot be defined gnerally.,

although experience aid an int-nJtc knowledge of system detai.s usually

provide. an appreciation for the conditions under which the first-orer

resu].ts should be accurate or suspect. When in doubt, practica1 resbric.-

tionS on raxges can be evolved by compar'Ing the first-order results irit-h

-auxiliary coplete so.lu0ions, or by. developing second-.order sensitivities.

The simplest speciEl. case using the above results is the single-loop

system with the open-loop troi, sfor function G(s). Here F(s) = 1 +G(s) and

the canponcnts of a ar- the gain, K, the open-loop zeros,-zj, and the

open-loop poles, -'pj. Using the open-loop transfer function form given by

Eq. 3-78, the relation G(?i) = -1 in Eq. 3-118, and the basic formulations

of Eqs. 5-81 through 3-88 gives the resultdz up Ii
Caxj v. + X" -- v z- -E., J--+., X1i + P

-[i1 z 33:1 dpj

i~K P /N

Canparison of Eq. 3-121 with its predecessor equivalent for first-order

poles, Eq. 3-83, shows that key changes for the multiple-pole case vxe in

the gain sensitivity and in the exponent N on the closed-loop pole shift,

dXi (or, as written in Eq. 3-1P1, an exponent 1/N on the sum of the sen-

sitivities). Me pole and zero sensitivities are also cbsnged& as the gain

sensitivity,

~I. N.

K . (3-122)

s =N
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L t.CC .onfl Cf.- It" ~ iic r. ~ ciJo~ the vroll-knwi chua eterisies

of' a branrch roin on a rod- locus plolu. Theic inicoing. branmches, vehich at

thlCir junction~ rpresant an NMh order closed-loop root,J are evenly spaced

and separated frcni each other by 2;cl,. Th11e dopurti)hg branches are also

separated from each othea, by &IN] arid are ri:Ldwey betweecn the incoming

branche s.

Except for these isolated. u il-rc rooL points, the root locus

consist-s of bran~ches characterizing; the paths of' the clcoscc-loop roots as

open-loop gain is~ 'changed. The gairt sansitl.ty is tangent to these paths,

whereas the zero and polc ensiS w-113. mak1~e ing es with the tarigents

given by (), +1 Yzj F1 and -- 2j ().j -1pj) re spcctivey,

Scnst-ivity factors Sfor systemi partenieters o'thcr than poles end zeros

Can %lso be detormiined. For instance, for the system parnincter at. where

G(s , aj) :-KEN( s ,C.j )/D( s, cxj) the sensti~vity fuctor is

S* j [i -N D](-15

03 'V I .U S( j

As noted previously. without proof, the rain sensitivities are simply

related to the transient response characteristics of a unity-heodhack sys-

tcm via the trnodah. response cooe Tilents: for the closed-loop rot. The

partial fraction expanlsion 0C the systems weighting flunction will contain

the torms

'( 2 :)) +Q1 2 t + +( i

as thc contri"b-ution of' an Nth order roc4b. Mehe N modal response coefficicnts,

k k , 2, . N, are evaluatec by

1 (N-k r"s
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The gain sensitivity is the xi ,' L, .c of the Lh xorCiOL rci.po?):c ceffienii.,

i s - :o ) 1(3-126)

To prove this rcla"Aionshlip, it is conveniert to introduce the variable

QiN(s) which is defined by

Xj G(s)i ()  = : ct)-(3-127{)

where QiN0li) = QIN Revitii g Eq. 3..12' as

[ s + (s) (s - li)NG(s) (3-128)

and dif'fecrentiating with respect -to s gives

[I~ d (o))]+Q %o
do ~ ~ +~ --~) d

N k+ (o do ~P (3-129)

Evaluattnc Eq. 3-129 at s = Xi, and noUlng that G(Xi) -1, gives

[Ir] =0 if N>l (3-130)

Thereforc,

0[d (s 0 if N>1 (3-131)

Repeated differentiation of Eq. 3-129 shows that the first N- 1 derivatives

of G are zero at s XI, 1.,
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and that

Q (3-133)

Fin~ify, car~pariston vithi Eq. 3-122 gives

~K.1.(3-1314)

Yhe miutiloop situation and. notation are strallfghtforward extensions

of' those introduced 6bove. fhstcad of oxic open-.loop--txansf6r function, G,
there are L~ ppqrioo transfer faunctions, Gk. Each- of those has a: Cain, Kk;
n., zeros-, .z;and. m~t +* rik POJecl -10k -TOe closr-.c .J1oop system character-o

isi;:tc, fune~ion F iza, inl, genera1, a stm-hatijol of7 terms,, 6aeii of' uhich inay be

the jproJ.uct of several. transfer functions, e. g;. F "_1 1 +GIG GG ,j -1 *

Under these circuwnstanmes Eq., 3-118 bec'uis

[ I L ( Gk, n k mk+nk G
A0j k-1 6GI Vjra 3+X 6z).-=1 P (3-1-35)

6~~ 

=~

or in terms of7 the sensitivity f'actors

[L / nKk~ mk+n k
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Lhus the ' aln sons:itivit:l-s ,'ie

OK EGI 6Kj.(i3)
k =('- ( lib 

F )ZC rk 4 317

TUO'".pole and zero sensitivil.ies are glvcn ii) terms of ratios involving

the gain ,e..;j tt-.., by

i

Fo xmlf r 1 __ er

d K/CPzh. (3-13G)

.1
SkI 1 P (3-139)

i  I s~ ill i  k

S k  Kj k/)k S=j 1s -m )'j

These zero and pole sensitivity ratios can be sonrsidrably i -pliCicd.

For oxmiple, for the 2jterml

Combidens this fith the sensitivity ratio) Eq. 3-158) gives

Ci

KSk 57 * 2'.kj/j I Zj.

This and several other sensitivity ratios ure stmi)-arized in Table 3-1.

Besides the -ratior, of~ sili,-ple pole and z.ero to gain sensitivities, s~iilar

ratios are also provided for quadratic elements i.fhich result when comlplex

conjugate pa.Ir:.s of l'O .s orc zeros are Joined. The .. rl.c formu,: fo:- these

quadratics are s2 2 aud 2 + 2as -I- (a2  b2 ).
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KV Gj ( F .,j

-S.

co ±202.1

2

2 2 + b2--- -------

b 4) 2 PEI), + a2 +: b2'

*XUse upper cian for' zaros, lower sign 'Lcr pol~es.

Also, inecldd .1n Table 3--l is a key roationshlp between gai

sensitivitics Lor di~fferent tranisfer Lunctions but reiatine to- the
s~io closed-loop root. Using Eq. 3-137 f~or twio dif'Thremt gains gives

___ d Or,( P/GJ )
Gh O. Plt)(341~2)
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Sincet. Y 5s a iin-o:x 01^.t~~c Cf'(; 1.. 0. Ca&''-dC AcI'AUoC ." k.
ap)poars fin F on). ith afn, (4,zcm v' nitCY, th texi Gk( r-/ CG') is

simply the surm of a .1 t h t,:.!;". of' F 'which incl-'Id Cik. When cvavating
seiisitiv~ty i'aetc),) Bo. 5-1il:2 is; ot" Central, jri!ortaice, fox- all the

,Cain sciisitivitio3k ])eatinei;'V to v, C-Ivcn clo:;ed.--locop root can be ca..-

culatoci us~ng-- ratios onte t. s-iogle Fain senisl:AJkvty is hox-Jn. Since

a multilocp on.lyrds 41f unually done; as~ a sequone of' loop closirtoz

the sindle-loop tachniquez; can b,- ajplicd to ob tain the gailn senoitivity.

for the l.ast or craterm-iostL closure, thereby pr oridirt- a sta-rting poin b.

The pole wrid zero sensitivity f'uctoro f'oflow directly once the grain

sensitivities are aaJ~)e

The evaluation of' the ratio, of Ea.. 3-1 i an be quite inx vod.

.Consideruble shplifications are oucntlms p'cssib~o by recalli.ng that

F::0 at s i Thus, if' F were gi"ven by

F G GGG + G1 .G G G -0., + (34.13)

then

K s=

G ' G G + G, GG G 2 5K1 2 1 G2 X

/ G G + G GGLGG-

?201 7 3 41 2G ---1 G,
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"Jb

With "our background in feedback control and analysis methods

established in the preceding chapters, we com now to the object of such

control-the vehicle. We rant to characterize the vehicle in a way

that In especially instructive to the flight control system designer

rather than to the stability and control aerodynanicist or dynamic

specialist. In order to do this, we deliberately emphasize the vehicle

dynamic properties as a whole rather than as the sm of its component.

parts. For example, we avoid the fine-grain details of stability deriva-

tives, and their dependence on configuration layout, in favor of a rudi-

mentary underitanding of the origins of aerodynamic forces and mments.

Also, we look for and identify simplifying but generally valid assump-

tions which eventually lead us to a direct appreciation for the important

factors governing the vehicle's response characteristics. Such an under-

standing of the over-all aspects of the object to be controlled is an

Implicit requirement for effective and efficient flight control system

design activities. It affords a basic appreciation of vehicle/control-

system interactions and flight controller possibilities most likely to

succeed.

With this object and bias in mind we proceed. in this chapter, to

establish the most generally useful (and used) sets of the basic equa-

tions of motion,. The process is specifically designed to appeal to

readers who are not necessarily conversant with fornal advanced dynamic

methods. Accordingly, we relate the developments to simple physical

pictures of the phenomena involved rather than only to compact nathe-

uatical formulation. All the assumptions required to get to the final

set of equations are specifically identified, as are their simplifying

effects. The factors involved in selecting an appropriate axis system,

and the process of converting from one set of axes to another, are set

forth. The effects of linearizing about an operating point or trim con-

dition and the influences of the selected trim condition on the resulting



linearized perturbed equations of motion are noted. Finally, the general

roigins of the aerodynamic forces which produce the usually important

stability derivatives are discussed and illustrated. The over-all

treatent;* presents an ensemble of selected descriptions. explanations,

and formulations eclectically combined to Illuminate, as brightly'as

possible, an area which is often incompletely understood.

Proceeding from, this base, in Chapters 5 and 6 we establish the

uarous transfer functions of interest, in factored form, for longitudi-

ml and lateral control. Here some of the feedback notions and methods

exposed In past capters are used to illustrate the effects of deriva-

tive changes and to extract approxinate transfer function factors in

literalt rather tban numeric terms. Such literal expressions show the

direct connections between the transfer function poles and zeros as a

*For other versions the reader can refer to the early- works mentioned

in the historical survey of Chapter 1 or to a variety of more recent
texts, e.g.,

C. D. Perkins and R. E. Hage, Airplane Perfornance, Stability and
Control, John Wiley and Sons, New York, 1949.

W. J. Duncan, Control and Stability of Aircraft, Cambridge Univ.
Press, London and New York, 1952.

B. Etkin, Dy namis of Flight, John Wiley and Sons, New York, 1959.

W. R. Kolk, Modern Flight Dynamics, Prentice-Hall, New York, 1961

A. W. Babster, Aircraft Stability and Control, Pergamon Press,
Now York, 1'61.

R. L. Halfmn, Dnmcs, Vol. I, Particles, Rigid Bodies, and
Systems, Addison-Wesley Publishing Co., Reading, Mass., 1962.

E. Seckel, Stability and Control of Airplanes and Helicopters,
Academic Press, New York, 1964.

tSuch approximations go back to Bairstow, with more modern examples,

of varying validity, appearing in:

Dynamics of the Airframe, BuAer Rept. AE-61-4, Vol. II, Sept. 1952.

H. H. B. M. Thomas and S. Neumark, Interim Note on Stability and
Response Characteristics of Supersonic Aircraft, RAE TN Aero 2412, 1955.

I* L. Ashkenas and D. To McRuer, Approximate Airframe Transfer Func-
tions and Application to Single Sensor Control Systems, WADC-TR-565-52,
June 1956.

A. J. Ross, The Lateral Oscillation of Slender Aircraft, RAE Rept.
Aero 2666, June 1962.
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function of the relative values of certain key derivatives, and give

valible insight into the probable mature ,of the assoc'ated control

problem. A feature of both Chapters 5 and 6 is the tabulation of all

presently known liteml approximate factors and the specific conditions

under which they are expected to be reasonably valid. The tabulations

cover not only conventional single-loop numerators, but also the coup-

Ling numerators required for the analysis of conventioml multiloop

flight control systems; they also cover vehicles ranging from entry

gliders to VTOL machines.

With this preview of the ramifications issuing therefrom, we turn

now to' the formulation of the vehicle equations of motion.

4,.2 M IN I'5 MCQD lIN AD XKM U RARII

In this section we lay the basic groundwork for the developments

which follow, starting with some assumptions and definitions.

AssMtIon 1. Mw air.-am Is assumed to be a rU body.

In a rigid body the d stances between any specified points
in the body are fixed, so this assumption elimiates consider-
ation of the forces acting between individual elements of mass.
Consequentlyj, the airframe motion can be described completely
by a translation of the center of ass and by a rotation about
this point.

Actual vehicles depart from the rigid-body assumptions in
two ways -,they are composed of several major elements which
are required to move relative to one another, such as engines,
rot ra, or control devices; and incidental elastic deformations
of the structure do occur, as in wing bending caused by air
loads. Some of the changes required in the description of tte
aerodynamic forces due to such s4atic deflection characteristics
are illustrated later- in this chapter (14.9). Other changes,
involving the dynamics of the structure* which can greatly
increase the degrees of freedom to be considered in the equa-
tions of motion, are beyond the scope of the present treatment.

*A good basic treatment of such considerations is given in R. L.

Bisplinghoff, H. Ashley, and R. L. HalfMan, Aeroelasticity, Addison-Wesley
Publishing Col., Reading, Mass., 1955.

Example equations of motion and resulting transfei0 functions for
specific aircraft are limited features of this flight control literature;
an exemplary cross section is contained in:

B. F. Pearce, W. A. Johnson, and R. K. Siskind, Analytical Study of
Approximate Longitudinal Transfer Functions for a Flexible Airframe,
ASD-TDR-62,279, June 1962.
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Since all motion, is relative, a suitable frame of reference mst be selected

to describe airframe motion. To this end, the following assumption is made:

Asafttio 2. he earth is asmed to be fixed In ace.

The Inertial frame of reference defined by this assumption,
I-e.. one which is fixed or moves at constant velocity relative
to the earth, permits a description of vehicle motion which is
accurate for relatively short term guidance and control analysis
purposes. It does have practical limitations when very long
term navigation or extra-atmospheric operations are of interest.

With the above two assuptions asi a basis, we have a reference frame

in which Newton's laws are valid., and a rigid body to which these lavs

my be applied. To proceed, consider that the aircraft has a linear

mntm vector, p. and an angular momentur vector, 9, each measured in

the Inertial coordinate frame. By Newton's second law the time rate of

change of linear momentum equals the sum of all externally applied forces,

7
dt

and the rate of change of the angular momentum is- equal to the sum of

all applied torques,
dR

X (4-2)

These vector differential equations provide the starting point for a

complete description of the rigid-body motions of the vehicle.

In almost all aeronautical vehicles some part of the thrust forces

are produced by the expenditure of vehicle nass; and the mass variation
must be considered in determining the rate of change of linear momentum.*

At time t let the linear momentum be

pl = mV(4

where m- is the mass and V the velocity of the vehicle. Then, if at time

t +At, -n is the net mass which has left the vehicle with an effective

exhaust velocity, va, relative to. the vehicle, the linear momentum will

*A. Somerfield, Mechanics, Academic Press, New York, 1952.

J. B. Rosser, R. R. Newton, and G. L. Gross, Mathematical Theory of
Rocket Flight, McGraw-Hill Book Co., New York, 1947.
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be P2 (- +hm)(v+A) + (-W(v )(ii)

gore V +&V and a +Am are the velocity and uass of the vehicle at tim

t +At, and V +Ye Is the effective velocity relative to Inertial space

of the'nass increment exhausted. It should be noted In passing that

the effective exhaust velocity depends on the exit area, the differen-

tJal between exit and ambient pressures, and the exit velocity of the

uass leaving the vehicle. The incremental change in momentum from time

t to time t +At is then

AP - p2m P (M+,6)(V+AV) - e-(V+Ve) - V

M mv- Tetm 4 AV

Dividing by At, and taking the, limit.-as At -0-0, the time rate of change

of momentum becomes
dV 

dm

dt dor dt :' '+edt + !e (4.- )

In Eq. 4-5 the thrust term, 'Te, is defined by ve(dm/dt), and represents
only that component of thrust due directly to the expulsion of vehicle

mass. Thus, the rate of change of linear momentum can be computed as

If the mass were constant and the product of the change in mass per

unit time and the relative velocity between the exhausted rass and the

vehicle were an external force. Equation 4-5 directly follows from

Eq. 4-1 when the thrust is developed by a momentum exchange other than

one directly involving the vehicle mass, as in a propeller (in the pres-

ent context such a thrust would constitute an external force). Thus, if

the thrust force includes exhaust products, Eq. 4-5 is correct in general

for vehicles traveling at speeds small relative to the speed of light.

Consequently, from this point on we shall consider that the thrust

component, Te is contained in the general applied force, P.

If inertial space is now represented as a ri ht-hand system of

Cartesian axesZyW , and the velocity vector, V, and total applied force,
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,are resolved into their components , 4and )rad Fj ,~ F~, wAnd
along X $1and J, respectively,. then the vector equation,. Eq. Ii-5, _an

be written as the three scalar equations

dZ(

dt

These equations would describe the motion of the airframe center of mass

as? seen by an observer in the fframe. So far the definition of X

is still quite arbitrary -it can have any orientation and can move at

any constant velocity relative to the earth. We will later present a

more specific definition.

The rotary-equivalent of the linear momentum equation for the

angular momentum, H, is, unfortunately, far more complicated. The

rotary analog of the ross, m, is the moment of inertia, which is a dyd,*

1. The angular momentum is the vector dot product of the inertia dyad

with the angular velocity A,. i.e.,

I(4-7

In the simplest case where the applied moment is about (or, as a vector,

is along) a principle axis, t, of the rigid body, the angular velocity

will also be about the same axis. Then the vector equation will reduce

to the scalar equation

where It is the moment of inertia about the principal axis considered.

*see, for exawnle, A. P. Wills, Vector Analysis With. an Introduction

to Tensor Analysis, Dover Publications, New York, 1958.
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In the general case there are up to nine angular momentum components

which differ in detail, depending on the axis system selected as a ref-

erence frame for the equations of motion. Consider the derivatives of

Eq. 4-.

ds dI
a 1 ( +8)

dt m dt dt

If the inertias and angular velocities are computed in the space-fixed

axis system.,X6j the moment of inertia about each axis will, in generi,,

vary continuously as the vehicle moves with respect to the axis origin.

Even if the aircraft's motions are restricted to constant velocities so

that theXZfaxes can be attached to the aircraft center of mass, the

inertias will change as the craft rotates about the axes. Such varia-

tions in inertia will contribute to the time rate of change of angular

momentum via the (d;/dt) .-A term in Eq. 4-8. The resulting equations

are therefore complicated by time-varying parameters- an extremely

undesirable feature.

An attractive alternative is to select an axis system which is'fixed

in the body. In this kind of system the measured rotary inertial proper-

ties are constant to the extent that the vass can also be considered

constant; and terms containing such quantities as dI/dt are always

zero. A body-fixed axis system has another virtue - it. is the natural

frame of reference for most vehicle-borne observations and measurements

of the vehicle's motions. For example, a pilot is fundamentally aware

of rotary motions about the vehicle's center of gravity rather than about

a spaced-fixed point. He feels accelerating forces with respect to his

own alignment with the body-fixed frame rather than with respect to a

space-fixed frame. Also, many flight instruments and sensors, especially

those used for short term control of the vehicle, are similarly consti-

tuted; i.e., in general they measure motions with respect to body-fixed

axes.

Unfortunately the above advantages are not obtained without some

penalty. For instance, the very simple inertial force forms of Eq. 4-6

are replaced by more complex ones when the linear velocities are measured

4-
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in a body-fixed axis syszem. Some of the applied forces, as well, are

uiore simply and naturally expressed in the inertial reference frame.

Also, instrunentation designed for long term navigation and guidance is

of necessity aligned to measure linear velocities and distances in space

or earth-fixed coordinate systems; and the pilot himself is visually

oriented to earth-fixed as well as vehicle-fixed axes* These factors

raise the possibility of a desirable intermixing of axis systems; for

example, an earth-fixed reference for forces and linear accelerations,

and a body-fixed reference for moments and angular motions. Such dual

systems are, in fact, needed for a complete treatment of the vehicle's

motion. However, for flight-control applications the expansion of the

left sides of Eqs. 4-1 and 4-2 is usually made in a manner appropriate

to a body-fixed axis system with its origin on the vehicle's center of

mass. This axis system is shown in F!g. 4-1a, together with the nota-

tion and sign conventions used to identify linear and angular velocities

and applied forces and moments. The body-fixed X, Y, and Z axes are

oriented in the aircraft with X forward, Y out the right wing, and Z

out the bottom as shown.

Ii. UANZON 0OF MM nEETL 70E(MB AM~f Y0MMO

The left-hand side of Eq. 4-. and of Eq. 4-2 can readily be expanded

formlly, especially when vector or matrix algebra is used; however, this

process affordso little physical insight into the origins of the resulting

terms. To better nrrow the gap between simple nathe-tical routine and

difficult physical interpretation we will carry rout the development of

the inertial forces and moments in two different ways. First, the devel-

opments will be related as much as possible to simple physical pictures

of the phenomena involved, and then it will be repeated as an essentially

mathematical exercise.
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Fig. 4-1. Vehicle-Fixed Axis System and Notation



Rectilinear Acceleration Components

The total rectilinear acceleration is dV/dt. The components of V

are U, V, and W alon-the X, Y, and Z body-fixed axes. The translational

acceleiation components of dy/dt along these axed will contain not only

the obvious components dU/dt, dV/dt, and dW/dt, but also centripetal

acceleration components due to the rotation of the body-fixed axis system

relative to inertial space. A simple two-dimensional example is helpful

to develop an intuitive understanding of these statements. Figure 4-2

shows the plan view of an airplane at two slightly separated points along

its flight path. At the left the airplane has the velocity components U

and& V along the X and Y axes, respectively; at the right a.small incre-

ment of time, At, later the aircraft"'s velocity has changed in both

nagnitude and, direction. The craft has rotated through an incremental

angle, REtt, and the linear velocity conponents are now U+WJ and V+ AV.

Zile
Plight

Path

.- Y.

U + a]

V + AV

Fig. 4i-2. An Airplane in,-Two-Dimensional Accelerated Flight
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When the acceleration is written as a time rate of change of the velocity,

t the components with respect to the origLml X and Y axes are:

ai T (U +aj) cos lt -U - (V +AV) sin Mt
ax At

- 6 -v (4-9)

and
(v+Av) cos R t -v + (u+ W) sin Rt

a At-0 At

= uIR (4-10)

where the dot-superior on U and V indicate the time derivatives of these.

velocity components measured in body-fixed axes. The vector acceleration,

a, is the vector sum of the two components given in, Eqs. 4-9 and 4-I0.

With 1, J, and k taken-;as unit vectors along X, Y, and Z, the acceleration

vector becomes:

a = ax1 +.ayj

[6 + 4]+ [-VRi + URJ] (4-11)

The first term is just the time derivative of the velocity measured

in the body-fLixed coordinates. The second term can be identified)

by recalling the rules for vector cross-multiplication,* as the

cross-product of the angular and linear velocities; in this case Rk and

V = UI+V, respectively, i.e.,

.x [u1 +v] = UR(kXi) +VR(kxj)

= U1VJ - VRI (4-12)

since i x j = k, j x k = ip k x i = J, k K j = - x k etc. If these

results are now generalized to the three-dimensional case, the vector

acceleration will be:

Lv n x v (4.-13 )a = V fl-V
dt

*Wills, cit.
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Here dV/dt is used to denote the time derivative of velocity relative

'to inertial space axes, whereas the dot-superior notation indicates the

time derivative of velocity observed in the body-fixed coordinates.

Physical7,, the cross-product term arises from the centripetal

accelerations along any given axis due to angu3ar velocities about the

remining two axes. Thus, for rotations about the Y axis, the pitching

velocity, Q, and vertical velocity, W, can both be represented by simple

angular motions about some instantaneous center in space defined by

x = W/Q, as shown in Fig. 41 -3. The centripetal acceleration component

*Instantaneous
center of rotation

Fig. 4-3. Centripetal Acceleration Along X

Due to Pitching and Plunging

is then directed forward (positive) and is equal in magnitude to the

product, WQ. The picture about the Z axis is similar except that, fol-

lowing the right-hand rule, the sign of the side velocity is negative

and the corresponding acceleration component is -VR (Fig. 4-4).

* Instantaneous
center of rotation

-V ; R

Fig. 4-4, Centripetal AI'Vceleration Along X
Due to Yawing aid Sideslipping
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These constructions can be repeated for each axis in tirn with the

Ssladar-and general result (inclWdig linear acceleration) that

aI = 01 + 02 V3 - V2  (4-14)

where V and w are linear and angular velw.ities, respectively, and the

subscripts 1, 2, and 3 represent axes taken in right-hand progression

(e.g., if 1 is Y, then 2 and 3 are Z and X, respectively). AccordiDgly.,

the complete .set of linear accelerations, obtained by specializing

Eq. 4-14, is given by
ax -- + -v

, ~ay, -v + Mi - P ,1

az W W+PV-QU

Precisely this same result can be derived formrlly using the vector

eqution, Eq. 4-13, with

V = u1 + vJ + wk (4-16)

n = Ai + k (4-17)

Inserting these into Eq. 4-131

a dV [0 + !j +uvi4-Pdt

U V W

=[*:+QW-Rv]i + [4+RU-PW]j + [*+IPV-U]kc (4-18)

nertial Torque Components

The total inertial torque about a given axis is due to both direct

angular acceleration about that axis and to components arising from

linear acceleration gradients resulting from combined rotations about

all.axes. To obtain a physical understanding of how these effects arise,
we will first investigate the dynamics of an infinitesimal element of

mss, dn, as shown in Fig., 4-5.
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Fig. 4-5, Linear Velocity.Components of an Element of Mass
Due to an Angular Velocity 0 living Components P, Q.and R

Figure 4.r5 shows the linear velocity components of the elemental

-mas due to the angular velocity components P, Q, and R. The accuracy

of this representation can be verified by inspection, or by multiplying

the angular velocity and the radius (distance) from tie axis system

-origin at the vehicle center -of nass to the elemental mass. That is,

Tdm, p X [PI + Qj+ uc] x [xi + yjI.zk]

i j k

- pQ R
x y z

i sQz-iy +a[Rx-Pz] + k[Py-Qx] (4-19)

Associated with each of these linear velocities is a linear momentum,

which is simpl the velocities multiplied by di. The moment of momentun

(i.e., angular momentum) is obtained by summing the moments of these

linear momenta about each axis. For example, about the X axis the angu-

lar momentum component will-arise from the J and k components multiplied,

respectively by the, z and y lever arms (see Fig. 4-5),
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d111  [-Z(1bx-Pz)+y(Py-Qx)]ft

or, expandng., (4-20)

dHx  = y(yP)dm+z(zP)dn-z(x)dm-y(xQ)dm

The complete set of equations obtained in this vay is:

dHx  (y2 + z2 ) Pd - zx Rdm - yxQd

dy - (z 2 +x2 ) Q dm - xy P dm - yz R dm (4-21)

dH = (x 2 +y 2 )Rdin - zxPdm - zyQ-dm

Again,. these can be derived by inspection of Fig., 4-5 or by using the

vector relationship for the angular momentum, i.e.,

dl = pXdp = pxVd(dm)

I k

= di x y z (4-22)

[Qz-RY] [mc-Pz] [Py- Qx]

For a finite rigidbody the components of the moment of momentum will

be the integrals of Eq. 4-21 over the, entire mass of the vehicle:

X=P f(y2 +z2) dm - Qfxy dm -Rf xz din

Hy = Q f(z 2 + X2) dm - Rf yz din -- Pfyx dmn (4-23)

HZ=Rf(x2+y2)dm - Pfixdn Qfzydml

Notice now that the integrl f(y 2 + z2 )dm is, by definition, the moment

of inertia, Ixx, of the entire mass of the airplane about the X axis.

Similarly, the integral fxydm is defined as the product of inertia,

Ixy. The renaining integrals in Eq. 4-23 are similarly defined *nd the

equations may be rewritten as
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SX = PIXX - QIX - RIXZ

H' = QIyy - RIyz - PIy (4-24)

HZ = RIzz - PIxz - QIyz

where Iz =Izy, from the form of the integrals.

An alternative, still physically satisfying approach to the deriva-

tion of Eq. 4-24 is to consider the aircraft at the outset as a rigid

body having principal axis moments of inerti IX , Iy O, and Izo.

Because the body-fixed XYZ axes do not necessarily coincide with the

principal axes, we require an appreciation for the angular momentum

components due to product of inertia terms. This can be obtained by

reference to Fig. 4-6 which shows the XZ coordinates rotated with respect

to the principal axes of inertia. Resolving the angular velocity, with

P

Ix X

'Ro

Ixo

z Izo

Iz.

Fig. 4-6. Principal and Body-Fixed Axes

components P and R in body-fixed axes, along the principal axes,

Po = P cos m + R sin m
(4-25)

Ro = R cos m - P sin m

Accordingly the total angular momenta about the principal axes become

= poxo = Ixo(P cos m + R in M) 114-26)
HZo = RoIzo Iz0(R cosam-Psin m)
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Resolving these back 'Into the XZ axes,

x = HXo cos c& - HZosin

HZ  = HZo Co s + HXo s in a

and, substituting Eq. 4-26:and collecting terms,

H1  =~x 4i~coB2 m+ Izo si2 m] + RV1 xo 2 zo) sin 24L

P[ (IxO 1z0) sin 2m], + RIocos2 m. + 1x0 sin2 4
The bracketed terms are moments and products of inertia in the XZ axis

system i.e., Ixx Ix o c0o2 m + "Izo sin2

Izz = Iz o cos 2  + Ixo sin2 
. (4-27)

Ixz =  (Izo 2 Ixo)

Consequently, HX = PIxx - RIxz (4-28)

RZ = RIzz - PIxz

Repeating the above process for -the dther two planes results finally in

HX = PIXX--QIxy-RIxz

Hy = Q3yy- RIyz - PIYx (4-29)

HZ = RIzz - PIzx - QIzy

'"which is identical to Eq. 4-24.

Turning now to the calculation of the time rate of change of angu-

lar momentum, it is apparent that this will be simplified if the products

of inertia do not vary with time. Formally, this requires:

Assunption 3. The ross and mass distribution of the vehicle
are assumed to be constant.

Actually there my be considerable differences in ross and,
its distribution throughout a mission as fuelAb burned, stores
expended, etc. The assumption is, nonetheleps, ordinarily
reasonable, because the rates of change are relatively small and,
ay be safely neglected for the time periods covered by most

analyses.
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With this assumption it is easy to se(; (Eq. 4-29) that angular accelera-

tions P, Q, and R will lead directly to the contributions

= - -kIz

These amount to the time derivatives of the angular momentum components

as expressed in body-fixed coordinates. They do not constitute the total

time rate of change of the angular momentum because, even with zero angular

acceleration, steady rotations about a given axis change the direction of

the angular momentum vectors about the remaining axes* For instance, from

Fig. 4-7 it is clear that a steady angular velocity, Q, about the Y axis

produces a cdhrage of angular momentum

which is directed along the X axis, i.e.,

6HX = HzQAt. This rotation will add a 6H Z-- Q

component of dHX/dt equal to HZQ to the

X component and, similarly, a term-HxQ HX

to the Z component of dH/dt. Analogous QAt

constructions in the remaining planes,

when added to the above and to the time /
variation of the angular momentum rela- HZ

tive to the body-fixed axes, yield the 6HX Z

components of the total time rate of Fig. 4-7. Angular Momentum

change of angular momentum: Change Due to Steady Rotation

dHX

dt Hy + RHx - PHZ (4-31)

d-z -_ z
dt

Substituting the angalar momentum components of Eq. 4-24, the total time

rate of change of momentum about a typical axis (X) will be

A

?I ""4-18



- dt H QHRHy

-(hxxc- 43 W-hxz) + Q(RIzz -PIxz -Qyz) -R(QIy y z z

HX QHZ RHy

h. + QR(Izz-Iyy) - (PQ+k)Ixz + (PR- )Ixy - (Q-R 2 )Iyz

By considering the simplified picture shown in Fig. 4-7 and (4-32)

such appropriate momentum change components as QHZ, the physical origin

of 'even such strange and obscure terms as -e2yz is readily seen.

When all of the components are inserted in Eq. 4-31, and the nota-

tion on the inertias Ixx, Iyy, and Izz is simplified to Ix, ly, and Iz,

the result is

PIX x +QR(Iz-Iy)-(PQ +RI+xz (PR-QIxy- (-R 2)Iyz
dt

SdH Iy + PR(Ix_ iz) (QR + )ixy + (pQ)iyz (R2 p2 ) Ixz (433)

dt

z RIz + PQ(Iy-Ix)- (PR +QIyz + (QR-P z- (P2 -Q2)Ix

This completes the simplified development of the inertial torque components.

For a formal development of the inertial momi-nts we note that the

form of Eq. 4-1 3, and the steps leading to :t, are actually suitable for

any vector whose components are measured in the body-fixed XYZ axis system.

Thus, substituting H for V in Eq. 4-13, the time r te of change of the

angular momentum will be

dE
= +n X (4.-.4)' dt

This equation can be used directly once a vector expression for the

angular momentum is obtained.

The moments and products of inertia in Eq. 4-24 are the rotational

analog of the mass in Eq. 4-5 There are, however, nine components or
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six mLgnitudes, since ij= Iji, required to specify the rotary inertia

_properties. For use in vector algebra operations this inertia is writ-

ten as the dyad :

Z ixjj± - Ixyij - IxzllC

- IJx + Iyj - iyz k

- Ixzki - Iyzk; + Izzkk (4-35)

.In forming the dot product between a dyad and a vector, the unit vectors

in the vector quantity are dotted into the closer of the unit vector

pairs shown in the dyad, i.e.,

(ki) L 1 = k (4-36)

(ii)" S = o, etc.

With this convention the angular momentum can now be written directly as

S=H~x i + llyj + HZk (4-37)

S[PIxx - QIxy - RIxz]i

+ [-Pixy + QIyy - RIYz] j

+ [-PIxz- QIyz + RIzz]k

This result is the same as that given in Eq. 4-29 and, when used with

Eq. 4- 4 produce6 the Eq. 4-33 values of the components of dq/dt along

X, Y, and Z. There is no instructional advantage to be gained in carry-

ing out the algebraic operation (which is analogous to ;that of Eq. 4-18

for the rate of change of linear momentum).

Recaptu~atjon of Inertial Forces and Simplification of Inertial Moments

The linear accleration and moment ,equations expressed in quantities

referred to body-fixed axes are given in Eqs. 4-15 and 4-33, respectively.

The linear acceleration set will be recapped here-.just as is; but the

rotary equations are overcomplicated and can be simplified by adopting

an additional assumption.
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Asswntion 4. The XZ plane is assued to be a plane of symetry.

Assumption 4 is a very gpodapproxrmation for most airborne
vehicles. When it applies, -we see from Fig. -8_ that there is
both a positive and a negative value of y for each value of x and
z) consequently, Iyz =fyz dm = 0 and Ixy = fxy dm= 0.

Pliue of SymmetrY

Airpimle C.G.

'Fig. 4-8. Airframe Plane of Symmetry

The expanded form of the equations of motion referred to body-fixed axes

can then be written a's

y = ( (+ RU -NP)

z 7 m(* +PV-QU)
La =  TX - RIxz + QR(Iz- Iy) - PQIxz

M = 61y + PR(Ix-zY- 2Ix, + p Ixz

] N = R - lIxz + PQ(Iy-Ix) + QRIxz

4. mmi~Sox or' To~ GaVZT YoRC

Components of the OGvvi-ty 7oioe

Among the forces and moments acting externally on the vehicle, those

due to gravity are always present. Neglecting gravity gradient consider-

ations which are only important when all other external forces are essen-

tially nonexistent (e.g., in extra-atmospheric flight), the gravity force

can be considered to act at the vehicle's center of gravity. Snce the
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emter of gravity coincides vith the center of ms., the gavity force

produces no.external moments about that point. Thus, for our body-fixed

axes, gravity can contribute comwonents only to the suimtion of the

external forcea.

To determine these components consider the alignment of the gravity

vector with respect to thelXYZ axes as shown in Fig. 4-9. Here the prob-

lem is essentially that of defining the relative orientation of a line

(the g vector direction) with a rectanugular coordinate reference frame.

Rotations (in azimuth) of the frame about the g vector have no effect

on the relative orientation of the g-vector/reference-frame, so only

the two angles 6 and 0 are needed to describe the physical situation.

y

Fig. 4-9. Orientation of Gravity Vector
with XYZ Body-Fixed Axis System

Direct resolution of the gravity-induced force, mg, results in

bX = mg sin (-0) = -g sin6

AY = Dig cos (-0) sin 0 = mg cos 6 sin 0 (4-39)

Z = mg Cos (-0) cos 0 = mg cos e cos 0

Unfortunatey. the angles 6 and 0 are not in general simply the

integrals of Q and P, respectively, so that we have, in effect, introduced
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two Dew lotice quaztities. We mat, therefore, conct the ngular

velocities P, Q, and R with S and 0 and their derivatives. The details

of this will depend on whether the gravitational vertical as seen in the

vehicle is assumed to be fixed or rotating relative to inertial space.

The first situation is generally an excellent approximation whenever the

vehicle speed is small relative to orbital velocities, whereas the second

is more appropriate for very high speed flight. Both situations will be

examined below in separate articles. Interspersed between thbse two

treatments will be a short resume of axis transformation considerations

which are needed here for the first time in this book.

AnVular, Velooity of XYZ Relative to the ravitationala Vertical

To express the angular orientation and velocity of the XYZ system

with respect to the gravity vector requires the introduction of the

angular velocity of the axes about the g vector. This is the azimuth

rate,, 4. With this angular velocity added to 0 and 0 , the resolu-

tions of interest are pictured in Fig. 4-10. Note that the 4 vector is

not normal to either 0 or $,_but that its projection in the YZ plane is.

cos (\6)

/ '/
\' /

Fig. 4-I0. Angular Orientation and Velocities

of g Relative to XYZ
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2ben, recognizlzas that cos (-9) - cosO an sin (- 6) - -sinS0, and

assunIng that the j vector 4oes not rotate relative to inertial space,

the fof ving relatiors are apparent by direct resolution:

P = --

Q = Scos4 + "cos sin0 (4-40)

R = -oslnO + icose cos o

The converse case is also directly apparent from Fig. 4-I1O, i.e.,

4- sin 0 =P

o = Qcos0 - Rsin0

cosS = Rcos 0 + Qsin .

which reduces to

4 = P + Qtan® sin 0 + R tan 0cos 0

S= ,Qcos 0 - R sin 0 (41-41)

cos O\ + Q /sin0\

These relationships supply the required connections between e and 0 and
P, Q, and R.

Veor Resolutons an.-xs Transf ro.tions

When two or more frames of reference are needed to define physical

relationships, it becomes necessary to orient these reference frames one

to another and to establish the transformAtion relations needed to define

a given vector quantity in terms of components in the several frames.

Perhaps the simplest way to accomplish these requirements is to define a

mrtrix of direction cosines which relates unit vectors in one axis sys-

tem to those in another. The determination of the elements in such

natrices can be accomplished efficientl4 by a combination of inspection

and matrix multiplication procedures. These will be described below.

i
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Ia Flg. 4-11 the unit vector6 a', I',.me' .f tree ,t ot-h ed

orthonl coordinate system are found in. terms ,of iit vector* a, a,

and *,of another. The a', b', ' system is obtained from a, b, a by a

rotation about 0a through the angle |. As a directional cosine array

b
.asin t

b cos

b sint

a Cos

' cos + b sint

b' = -a sin t + b cos 9
0' = C

Fig. 4-11. * •Resolutionof Vectors

this transformation becomes

a b

a' cos g sin g 0

b, -sin cos 0 o (4-42)'
o' 0 0 1

This array my be read either left to right or down. For instance,

reading down in the a column ,.

a a,' cos - b' sin + 0.0'
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reereas reading b' from left -to right,

b = -a sin 9 + b cos't 0 a

The army can also be interpreted as a matrix and its inverse; these

correspond, respectively, to the array being read left to right and the

array being read down.* The matrices will be

cps g sin 0,0

[l I; = -sin" cos'g Q (4-43)

which is appropriate when going from a'" b',. ' to a, b, , i.e.,

and the Inverse,

cos g -sin g 0

= sin 9 cos g 0 (4-45)

0 0 1

which appliesvwhen going from a, b, a to V, b', V, i.e.,

*Such substitution of rows for columns in a matrix in general produces

a transposed matrix. In the present case the product of the matrix and
its transpose is a unit matrix which makes the transpose also an inverse.
Aside .from this, perhaps extraneous, explanation, the gist of the matrix
operations needed for axis transformations can be followed directly in
this presentation. If additional background is required, the reader may
refer to any good text on matrix operations, e.g.,

A:. C. Aiken, Determinants and Matrices (Interscience Book), John
Wiley and Sons, New York, 1956.

E. A. Guillemin, The Mathematics of Circuit Analysis, John Wiley
and Sons, New York, 19k9.

L. A. Pipes, Matrix Methods for Engineering, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1963.
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This rotation and resolution can also be symbolized conveniently by
a "transformation" box, as shown in Fig. *-1.2. The interconnections

therein indicate the multiplication and additions required in the resolu-

tions. Although the arrows :in .icate progression from a, b, a to a', b', o',
the transformation works equalIy well ip both directions.

ali  bt of

00

a b a

Fig. 4-12. Transformtion Box for Single Rotation

The Eq. 4-42 array exhibits certain general properties which, once

recognized, make it possible to write out the appropriate array for any

single rotation by inspection.

* The main diagonal terms are always either the cosine
of the angle of rotation or 1.

a The 1 is always associated with the axis about which
rotation occurs.

* The remaining elements in the row and colmn containing
the I are all zeros.

*This convenient rubric for vector resolution is due to Robert W. Bond.
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* The reining pLacee in the matrix contain the sine of
the angle of rotation and are always symmetrically
placed relative to the cosine terms.

9 In the direct right-banded rotation the negative sine
always appears in the row above the 1 (this is to be
interpreted as the third row if the 1 is in the first).

Any set of axes can be obtained from any other by a sequence of

three rotations. For each rotation a matrix or transformation box

corresponding to the array described above applies. The total array

for the three rotations is skmply obtained by multiplication of the

three matrices representing the individual rotations.*

The most common transformation set in vehicle dynamics is that

between an axis system which incorporates the g vector as one axis and

the bod-fixed X, Y, Z axes. The actual rotations involved, following

the usual order, are indicated in Fig. 4-13. This shows the unit vectors

, a, and n in the vehicle-centered, gravity-directed set and i, J, and k

in the vehicle body axes. The matrices for each of-the three rotations

shown can be written by inspection, in terms of the "Euler angle," f, 8,

0; as [Cos* sin 0
[ f] - -sin* cos*

0 0

= Cos 0 -sin 0

sin [ 0 cos 8

1 0 01

[0 o coso sinO

0 -sin 0 Cos 0

These rotations are also shown in the transformtion boxes of Fig. 4-14.

*A m'atrix product has the form

[ail ai1 fbl b12 1 allbl, + aj 2b21  allb 12 + a 2b22 1
a2 1  a22 b21  b22  a2b111 + a22b21  a21 b1 2 + a22b22
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Carrying out the marix mLltiplications in the order approriate

t-to the rotations, i.e.,

[i] = [ I[e 1[( 

the complete direction cosine array is found. That is,

Scos * cos 0 sin cos e -sin e
cos* sin0sinO - sin*r cos 0 sin*r sin OsinO +cos flcos 0 cosO sino,

k cos*sin cos@ + sin*sin sin*sinOcos0-cos * sin cos cos9

(4-49)
Just as in the simple single-rotati6n example, the array can be read

from left to right or down. As matrices these correspond to

[E[] = [ (4-5o)

the array being read left to right, or

the array being read down.

In general, any pair of coordinate systems can be associated- by a

sequence of three rotations such as those exemplified above. There

are, however, six possible sets of rotation angles corresponding to

the six possible ways of getting from one axis system to the other.

Each of these results in a different directional cosine array. The forms

of all are similar in that, of the nine terms involved, one contains a

single angle', four involve two angles, and the remaining four contain all

three angles. While in principle any of the possibie rotational sequences

can be used, there is in practice ordinarily one to be preferred. In
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the present case the rotational sequ nce and angles were defined to

result in the least complicated resolution of the g vector into the

body-fixed XYZ system. This is given by

6=gn = g [--sin 8 L + Cos 8 sin\o C6. *0 cCeos 0 k] (4-52)

The basic simplicity of the components shown is insured by taking the

first rotation about the gravity vecto through an azimuth angle, *.

As already remarked, rotations of the b y-fixed axes about the g vector

can have no effect on the relative orien tion of the g vector and the

XYZ frame. The two remaining rotations n conceivably be accomplished

.n two different ways without complicat the g vector description.

The sequence and angles selected are the ore natural cyclic sequence,

and also have the advantage of being thos measured by a typically

oriented vertical gyro. (As will be seen i Chapter 9, a two-degreeTof-

freedom gravity-erected vertical gyro ori nted with its outer gimbal

bearing axis along X measures 9 and 0 on its inner and outer gimbals,

respectii/ely.)

The angular velocities are readily jouid using the transfornation

boxes of Fig. 4-14. Thus, the angular eocities P, Q, and R about

X, Y, and Z, respectively, can be found br tracking the angular veloci-

ties associated with the transformation b xes *, 0, and 0 through the

intervening transfornations, with the res t

P 4 - sine

Q cos + cos sin (

R * cos 'cos i - 6 sin 0

This is the same izsult as that previously d ived on a more physical

basis in the discussion leading to Eq. 4-40. lithough the axis trans-

fornations can be, run in either direction through the transformation

boxes, the angular velocities go only ohe way. Consequently, the

equations (Eq. 4-41i) for 4, 8, and 4 in terms o P, Q, and R are most

conveniently obtained via the physical picture .o Fig. 4-I0 or by solution

of Eq. 4-53.
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Agu.ar Velocity of the Gravitational Vertical Relative to Inertial Space

If the aircraft travels at a very high speed, the angular velocity

relative to inertial space of the gravitational vertical is no longer

approxinately zero. Consequently, the right side of Eq. 4-53 must have

additional terms added which take into account the rotation of the XYZ

axes as the aircraft moves about the earth. To take this effect into

account, inertial space will now be defined as an XMlaxis system, with

its origin at the center of the earth and its axes nonrotating relative to

the fixed stars. For any given flight path this system is oriented so that

the -Z plane contains the equilibrium flight velocity and gravity vectors.

Then, as shown izi Fig. 4-15, the vehicle-centered, gravity-directed

system, XYZ, is oi-;nted so that its XZ plane also contains the equi-

librium flight vectd6. Then the angular velocity of XYZ relative to

inertial space is $', ol
u (4-54)

Thus., the angular velocity of XYZ is

6xYZ = (4-M)

or, referenced to measurements in the body-fixed frame via Eq. 4-49p

0xyz = - [ (sin * cos6)i + (sin * sine sin 0 + cos * cos 0)3

+ (sin * sine cos 0 - cos * sin O)k]

Consequently, the components of the angular velocity relative to inertial

space then become

P = $-* sine I -(sin * cose)

Q= 6 Cos + Cos e'sin -U(sin * sin@ sin 0 + cos t. cos 0)

R= cos e cos0 - 6 sin 0 ::2 (sin *sin e cos0 - cos sin 0)

11 relative toXYZ a Xy relative to XU3.

(4-56)
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(Vehicle Center of IUss)

U W

Angular velocity V
of XYZ relative

to inertial space

(Geocenter)

AXES UNIT
VECTORS DESCRIPTION

Inertial system with origin at geocenter.

X) plane coincident with equilibrium

flight velocity vector.

Rotating system with origin at vehicle

center of mass. Z directed toward
XYZ 3mm geocenter. XZ plane coincident with

equilibrium flight velocity vector.

Fig. 4-I. Definition of Inertial Space
-and Radially Directed Rotating Axis System



Mh WARIATION OF ME fl11TTAL AM~ GUMTI0NAL OUD3T

Both the inertial. forces of Eq. 4-38 and the gravitational forces

of Eq. 4-39 are proportional to the vehicle mass. It is therefore con-

venient to combine these terms into components which represent the

accelerations which would be sensed by instruments located with their

input axes coincident with the body-fixed X, Y, and Z axes. When this

is done and the remaining external aerodynamic and propulsive forces

and moments are represented by their generalized symbols, the six-

degree-of-freedom rigid-body equations of motion become

max.... m[* +' QW - R + g sine 0 X

'yc.g.= 4~ + RU - N - g cose sin0] = Y

maZc.g* = m + PV - QU - g cose cos = Z
(4-57)

P x - RIxz + QR(Iz-Iy) - PQ xz = L

4Iy + PR(Ix-Iz) - R2Ixz + p2 Ixz = M

RIz - PIxz + PQ(y- Ix) + QRIxz = N

To these must be added the auxiliary relations of Eq. 4-56 which relate

0, 0, * to P, Q, and R.

These equations contain products of the dependent variables, some

of which appear as transcendental functions; therefore they are in gen-

eral nonlinear. To reduce them to tractable form the total motion can

be considered as composed of two parts - an average or liian motion which

is representative of the operating point or trim conditions, and a

dynamic motion which accounts for small perturbations about the mean

motion.

The operating point equations are -obtained by recognizing that zero

translational and rotational accelerations are implicit in the concept

of a trim condition. Then, denoting such a condition with zero subscript,

the trim equations are given directJy by
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m[io% Vo v + g sin O] xo

4[UoO - WoPo - gCose o sino] - Yo

4[VOPo - oo - g Cose 0 Cos o] = Zo
(Ii- 8)

QoRO(Iz- Iy) - PoQoIxz = L0

PoRo(Ix - Iz) - Ixz + p=

POQO(Iy-Ix) + QOIxz = NO

Because steady-state rol-ling, pitching, and yawing are possible as a

trim condition, the operating point equations for Po, Qo, and Ro will.,

n general, contain all the terms shomi- in Eq. 4-56, although each will

have a zero subscript.

The perturbed motions are by definition those obtained by subtract-

ing the trim motions from the total motion. Thus, the perturbed equations

of motion can be obtained by substituting U = U0 +dU, P = Po +dP,

* = 0o +d0, etc., into Eq. 4-57, expanding, and then subtracting the

trim equation. A more straightforward process is to differentiate both

sides of Eq. 4-57 to obtain the perturbed equations directly. To simplify

the notation, ve designate the perturbed motion quantities by their lower

case equivalent\(*.g., dU = u, etc.); also we make another assumption.

The disturbaces from the steady flight conditions are
assumed to be s'1l enough so that the sines and cosines of
the disturbance angles are approximately the angles themselves
and 1, respectively, and so that the products and squares of
the disturbance quantities are negligible in comparison with
the quantities themselves.

Using this assumption, the perturbed equations of motion for the vehicle

become

m[A +Woq+Qw-Vor-Rov+(g cos 0)0] =

m[i+Uor+Rou-WoP-Pow-(g cos e0 COs 0)(p+(g sin e0 sin 0o)0] dY

m[* +vop+Pov-Uoq- Qou+(g case0 sin 0 )(p+(g sine 0 cos Oo)8] = dZ

(Eq. 4-59 cont'd next page)
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IX- tIXz + (Qor+Roq)(Iz-Iy) - (Poq+ Qp)I xz dL

4Iy + (Pbr+Rop)(Ix-Iz) - (2Ror-2Pop)Ixz = dM (4-59)

Ijz- Ixz + (Poq+Qp)(Iy-Ix) + (Qor+Foq)Ixz = concl'd

Perturbed equations are also required for the auxiliary relations,

Eq. 4-56. The portions of these equations which represent the rotation

of the vertical relative to inertial space are excessively complicated

when presented in general, and are seldom if ever used in their entirety.

On the other hand, the angular velocity components which represent the

rotation of the body-fixed XYZ axes relative to XYZ are occasionally

needed. These ar presented below:

p = - 0 sin e0 - e(jo cose 0 )

q Cos %o - O(jo sin 0o sin 0o) + ( o coc 0o cos 0o - 60 sin 00)

+ j cos 0o sin 0o (4-60)

r C cos 0o cos 0 - 9(jo cos eo sin 00 + io cos 0)

- e sin 0o - e(jo sin %o cos 00)

Also, iD view of Assumption 5, the rotation array of Eq. 4-49 can
be written in its most general linearized form as

em 1 n

:L"€'* ,,f .,...1.'. .e.,] 1-€.. I

*.Ol te t t S ej0 *99g* * #g) .(s.al*e .is * -tke e a s Ano m.o ) .9(,s. "4i0.) [EO +

* ,*.,f'. , st6e.) ** lf-t. off ft.1s
r tf...*ea' .t* -,- ..- ....*.,., 14~ ((..,.e,

*# ..( .. ses@..... S,efat'.) I .,... ...*,..., , ( 0.01. j - (0.o ft-

f . ..t. .s. ,. .ost,.) (e'ta"*"'0. . ) # " "* (4-61)
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Here [F] is the matrix made up of the operating point quantities alone

(underlined, square-bracketed terms) and [e] is the matrix mde up of

the perturbation quantities alone.

Assumption 5 limits the applicability of these equations to what

are called "small perturbations." In return for these restrictions, the

nonlinearities are removed and sets of linear equations result. This

permits an important simplification in the mathematical methods neces-

sary to analyze aircraft motions. Also, while the linearizations are

applicable in theory only to infinitesimal disturbances from trim,

experience has shown that quite accurate results can be obtained for

disturbances of much larger magnitude.

Although the equations are linear, they are also formidably complex

because of the high degree of generality presumed for the trim condi-

tions. Because of this complexity the equations are seldom used in this
"complete" form. Instead, simpler cases which nevertheles reveal funda-

mental control and operating problems are more commonly used. For instance,

a situation of great interest is that for steady, straight (o = 0),

symmetric (*o = Vo ='O), wings-level (00 = 0) flight. Under these

circumstances, the trim, or operating point, conditions consist of U0,

UO, Wo, and 0O as connected by

U = U cos e +W sin e

Uo + u a Uo cos e0 + Wo sin e0 + u cos e0 + w sin e0  (4-62)

-Uo(sin e0)e + Wo(cos 0)e

The stability characteristics with or without automatic control for such

conditions are of major interest, because if they are unsatisfactory the

Vehicle is useless. Then neglecting changes in the distance to the

geocenter, r, the perturbed angular velocities, including rotation of

the vertical, become
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p= + si n e ° -CosGO

q un -W coo e0  cose 0 _ sin 0

q( oo J r r

0I U0
r = .cose o0  - sin e o +P r

-7- = 1(U6 cos 0 + Wo sin 0 )
PO = Ro Io

Rotation of vertical relative to

(4-63)
In laplace transform style, q, €, and e are given by

cos o - - sin Oo P + sin Go + e -- cos eo)r

=O ( S-r 2
s r - r -r (4-64)

Cos 002+ 40/

U Cos wO W sin 0
r r

Uo sin 0 - Wo cos 0
r

Substituting the Eqs. 4-63 and 4-64 relations into the laplace-transformed

perturbed equations (4-59) specialized for straight symmetric, wings-level

flight, we get Eqs. 4-65 and 4-66 (overleaf).

Besides being considerably simplified over the fozirdable complete

linearized set, these equations are seen to be separated into two groups

of three.each. In the first, Eqs. 4-65, the dependent motion variables

are u, w, and 0, and the motions described are thus confined to the XZ

4-39



%10

II

II II II II ,

0 CM0

01 Cl Uo o--

+

to0 I +-

+ oo -s--.- --

+I®+

+ U)+

to 0 +Q

o

0 0 0 04

+ I +

0to-+o

-4-4



plane. These are generally referred to as the "longitudinal motions."

The other set, Eqs. 4-66, are lateral/directional-and consist of side-

slipping, rolling, and yawing. Actually, as shown in Eq. 4-66, the

rolling and yawing acceleration equations are not explicitly coupled

with the sideslip equation, although implicitly, and in practice, a

great deal of coupling can exist through the medium of the aerodynamic

forces presently contained on the right side. In fact, the lateral and

longitudinal separation indicated above is, at this point, only a

separation of the gravitatioixtl and inertial forces, and the six degrees

of freedom ,my actually be coupled through propulsive or aerodynamic

forces and moments. The separation occurs largely because of the assumed

trim conditions and is equally true whether or nut effects due to rotati6n

of the vertical are included.

In passing we should note, in connection with Eqs. 4-65 and 4-66,

that whereas pitch displacement, e, is the angular motion quantity used

in the longitudinal equations, the lateral equations utilize the angular

velocities p and r. This is only a matter of convenience and simplifi-

cation; substituting for p and r (Eq. 4-63) would greatly expand

Eqs. 4-66, and Eqs. 4-65 would suffer similarly if expressed in terms

of q rather than e. However, the choice of motion variables purely as

a matter of simplifying the resulting equations can rsk important

physical effects and, further, may not be consistent with the sensory

equipment commonly used to exercise feedback control.

To illustrate, consider the side acceleration equation in Eq. 4-66.

It is apparent from the expression for q (Eq. 4-64) that an alternate

form is dY
sv -Wop + Uor - g cos e0 q = d (4-67)

and that an added contribution to the term arises when the Eq. 4-63

expression for r is substituted. That is, doing so results in

sv -Wop + Uo(s cos 0 sin eo)-(g cos o- Uo dy (4-68)

We see now that the net side acceleration due to q perturbations is pro-

portional to the difference between the gravitational attraction, g cos 1o0

and the centrifugal forces due to high speed flight at a nearly constant
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value of r, Uo(Uo/r). Physically, what happens is that a constant value

of y, which is a gravity-directed angle, produces a body. axis turn rate,

r, proportional to q(Uo/r) as illustrated in Fig. 4-16 for the simply
visualized case of q = +900. Note that the positive direction of r is

reversed (counterclockwise rather than clockwise) because we are viewing

the underside 6f the vehicle.

U0
r

/°oo

Fig. 4-16. Illustration of Physical Origins
of Body Axis Turn Rate

The similar-appearing "weightlessness" term, e(g - Uo2/r) sin 00,

in the Z acceleration equation of Eqs. 4-63 is, correspondingly, elimi-

nated by using body axis pitch rate, q, rather than e. That is, from
the perturbed equations (4-59) specialized for the initial cnnditions

of interest and the relations in Eqs. 4-63 and 4-64,

q + u cos 00 w sin 00

si r r dZ (
"- U + sw - U0q + g sin 00 r 4 o -

s +r
r

where the bracketed term is just the expression for 0 (Eq. 4-64).

Considering now the appropriateness of Eqs. 4-65 and 4-66 for
feedback control application, it is immediately clear that Eqs. 4-66

are directly usable in conjunction with body-oriented rate gyro sensors.
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Conversely, Eq. 4-65 is most appropriate for a gravity-erected gyro or
platform. One final point worth mentioning is the appearance of the

second-order denominator in the side force expression of Eq. 4-66. This

oscillation, with a period (2nrLJo) equal to the time to circle the

earth., is of special importance for inertial guidance and navigation

systems.

SX ANBION OF TMAMD!= 0 QCEB AND YMMS

The aerodynamic forces are exerted on the vehicle by the surrounding

atmosphere; they are present whenever there are any reactive forces

between the air mass and the vehicle. In steady flight they my be due

to relative motion between the vehicle and the air mass or to accelerated

flows produced by the propulsion system. Although the specific forces

depend on their peculiar origins, the form of the expressions which

describe perturbations in these forces is not so particularly dependent

on origin. For instance, while on vehicles designed to fly at very low

speeds (e.g., helicopters and VTOL aircraft) the dominant forces and

moments are produced by the accelerated flows surrounding the propulsion-

lift system, the distortions of the accelerated flows (produced b motion

disturbances from the trim condition) result in force and moment changes

of similar character to those associated with "pure" aerodynamic flight.

Consequently, the end results of the treatment here are pertinent to

most kinds of air vehicles. Horever, whenever details of specific forces

are needed in the ensuing discussion we will consider "pure aerodynamic

flight of fixed-wing craft for simplicity.
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It can be shown by dimensional analysis* that the forces acting on

4 solids moving through fluids can be expressed in the form

F a F-~ ~ (4.70)

where CF, = a dimensionless coefficient

p = density of fluid

Va = velocity of the solid relative to the zud

'S = characteristic area of the solid

Since a moment is the product of a force .by a moment arm, the expression

for a moment can also be written in a fArm similar to tbat"of Eq. 4-70. The

aerodynamric moments and forces acting on an airplane in flight (see

Fig. 4-17) may then be written as

X = Cx(I/2)pVeS = aerodynamic force along X axis

ys= C(1/2)pV2 =s aerodynamic force along Y axis (4-71)

Za - C,(1/2) pV.S =: .erodynamic force along Z axis

I Cl(1/2)pVZSb = rolling moment

Ma  = C(I/2)PVaSc = pitching moment

Na Cn(1/2)pV2Sb - yawing moment

where S =wing area

a = mean aerodynamic chord; the c c
wing chord which has the
avemge characteristics of all
chords in the wing

b = wing span

b

Shaded area = S

Fig. 4-17. S, b, and c
of Wing

*C. B. Millikan, Aerodynamics of the Airplane, John Wiley and Sons,
New York, 1941.
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The total steady aerodynamic force on an aircraft is convention-

ally decomposed into lift and drag components. As shown in Fig. 4-1 8,
the lift acts normal to the flight path (i.e., to the relative wind),

and the drag acts parallel to the flight paths

L

Relaitive DWind

Fig. 4-18. Lift and Drag Acting on an Airplane

Akin to Eq. 4-71,, the lift and drag are

L = CL - pV. S  = Lift

D D pV2 = Drag

Note that, to avoid confusion, the dimensionless coefficient in the lift

equation is written with a capital "L," while a lower case "1" is used

in the rolling moment coefficieit. When resolved into body-fixed axes,

the lift and drag become the X, Y, and Z aerodynamic forces of Eq. 4-71.

The angles orienting lift and drag forces relative to the body-

fixed axes are the angles of attack, m, and of sideslip, P. These are

shown in Fig. 4-I 9. Here, as previously, the subscript "a" is used to

indicate that the velocity and its components are relative, i.e., air-

frame relative to air mass. If the air vass velocity relative to

inertial space is assumed to be constant, then the subscript can be

removed. The velocity components of Va along the body axes are

Ua Va Cos Pcos m

Va = Va sin P (4-.73)

Wa = Va cosp sin m
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Ua (along x)

Wo (along z) V "" Y

Va

Fig. 4-19. Orientation of Relative Wind
With Body-Fixed.XYZ Axes

The angles of attack and sideslip are

~~-i Wa
ua (4-74)

-1Va
a41 -

Va

and, as required by physical considerations, the latter is independent

of the orientation of the' X axis in the plane of symmetry. Finally, the

aerodynamic lift and drag force components along X, Y, and Z are

Xa w Lsine-Dcos cosm

Ya =  D sin p (4-75)

= -Lcos e-Dcosp sine

As indicated explicitly by the form of Eq. 4-70, the aerodynamic

forces and moments are functions of air density-and the relative velocity,

and are therefore implicitly dependent on the altitude and the linear

velocity components. Also, the dimensional coefficients CF are themselves

dependent on Reynolds' and Mach number, angles of attack and sideslip,

4-46



and linear and agular velocity conponents and their derivatives. If

the aerodynamic forces are considered to be continuous functions of all

these variables, each of the forces (Xa, Ya, and Za) and the mments

(t, %, and 3a) can be expressed in terms of the variables by expand-

ing the forces in a Taylor series. These series "have the form

S= Fo + I + a 2 + 3 + .." (4-76)

where A and ), represent the variables, including their derivatives, and

perturbations thereof, respectively, and the subscript zero indicates

the quantities are evaluated at the' operating point or trim condition.

In Eq. 4-76, terms of the order (a 2 F/A 2 )o(),2 /2 ' ) and all higher order

terms have been omitted in accordance with Assumption 5. In spite of

this, the number of potential contributing aerodynamic derivatives,

aF/ Ai, is dishearteningly large; and one way of eliminating some of

them is to specialize the trim conditions as we have already done for

the inertial and gravitational components.

Bteady-Otate Trm Speodaliuation

To see how the trim situation can affect the aerodynamic derivatives,

consider, as a pertinent example, the X and Z forces due to lift and drag

as shown in Fig. 4-I18. For an angle of sideslip, p, equal to zero,

Eq. 4-75 becomes
Na  = -D cos + Lsinm

7% = -L coS m - D sin e

or, in terms of the dimensionless coefficients of Eq. 4-71,

a ± PS(-C cos m + CL in ) (4-77~)

U4 a2S(-CL Cos m

To simplify the example, both CL and CD are considered to be functions

only of the angle of attack, m, and the Mach number, M. Accordingly the
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appropriate expansions of the perturbed forces, at constant density, involve

4 derivatives with respect to M, m, and V., as follows:

pv ~V a M 1-a% Co o CLsi o

+ am C cos +CL sin % + CD sin % + CL cos

(4-78)

(~a Va am (- CL C
- vap(- CL Co m- - cos o--, sin O

+Va am& a-CL ~ CD nn '
+ - Cos Go -L sin m + CL. sin m - CD Cos
2 A am COT %L5MDO%,

The various partial derivatives with respect to A are to be taken hold-

Ing the remaining primary motion variables constant. In this limited-

case the primary variables are simply Ua and Wa, and from Eq. 4-73,

for = ,
dUa = dVa CO - Va sin mo dm

dWa = dVa sin mo + Va cos c% dm

These can be solved to yield for A = Ua, dWa O,

aVa IdVal
dUoiwa =const

am -sin mo

and, recognizing M - Va/a, where a is the speed of sound

Cos 
(4-79)Ua a

(Continued on next page)

Similarly, for A Wa, dUa = 0,
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o =sin Q0

a Cos 06 (4-79)
M sna o  .(Concluded)

Wa a

Applying these values to Eq. 4-78, collecting terms, and s1*3lying
the notation in the usual way, i.e., ECD& = CD., etc., (M/2)( d=AM). Cj,
etc., yields

(4-k)

=pVa (c.-CD) cos2 Qo + (o C + CL + - sin % cos%*%

2 ±(C1Im+ CD) sin2 cLol

W- PVaS J-±(CL CDc4) crw o fCL + CD) - CD - CDuJ si oB o%
Wa 2 O 2 ci

+ (CL+ CLu) sin2 m0

a-s PVaS(-CLC ) COs 2 = + [±(Cm+CD) - CD - CDUI sin o cos %

___= PVaS 1-(C1..- CD) cos 2 a - [-(CD -CL) + CL, + C] sin a cos %

- (CD+ Cp) sin2 a1

The recurring trigonometric terms are typical of the usual axis
transformation relations (see Eq. 4-99) which, in effect, we have derived

by this process for the quantities of interest. That is, the Go = 0
derivatives or groups of them comprise the coefficients of the general

trigonometric expansion for mo / 0. It is clear that the choice of trim
a. cannot eliminate any of the derivatives, but can only influence their
assigned values and for mo = 0, considerably simplify their literal forms.
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P

For the analogous situation in the XY plane as sketched in

Fig. 4-20, there are similar (lateral) lift and drag forces acting, and

expressions for X and Y corresponding to

Eqs. 4-78 and 4-80 could easily be written.

There is an important difference, however, U

in the values to be assigned the dimension- IV

less coefficients, CL and C. In the ver- Side
IifttI

tical (XZ) plane, lift is necessary to sus- L

tain flight, and since Ct is proportional

to CL both parameters are usually positive ftand set by the trim condition. In the lat-

eral (XY) plane, side lift is undesirable Drag, DV

and ordinarily avoided, and it is unusual D

to set up trim conditions involving steady

sideslip, po. Thus the value of UX/Va, Fig. 4-20. Lateral Lift

which can be inferred by substituting P for and Drag Acting on

m in the Eq. 4-80 expression for XW, is an Airplane

usually zero. That is, for Po = 0 and the corresponding CL = >CD/P = 0,

XVa -0. -This. really results because the XZ plane is not only a plane

of inertial and geometric symmetry, but usually also of aerodynamic trim

symetry. When this is true (Po = Ro = Vo = O) then lateral perturbed

motions, p, r, and v, do not produce X and Z forces or M moments as

inferred by the foregoing discussion 6or v effects. Thus, we are led to

Assumption 6.

Assumption 6

The steady lateral trim conditions are assumed to be
Po = Ro = Vo = 00 = 0, and the longitudinal forces and moments
due to lateral perturbations about such trim conditions are
assumed negligible.

The assumed trim conditions are those prevailing for the great

maJority of all flying) and are identical to those which lead to the

"simplified" relationships of Eqs. 4-63 through 4-66. While complete

*Bairstow, Applied Aerodynamics, First Edition, Lonagrans Green and
Co., London, 1 920, considers turning and straight flight and shows minor
differences for the example airplane considered.
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aerodynamic symmetry is not necessarily guaranteed by these c6rditions

(as, for example, for propellers rotating in the same direction), the

independence of longitudinal forces and moments from latiral perturbed

motions is still assumed to hold with negligible error.

Assumption 6 has a corollary. With the aerodynamic trim forces

essentially symmetrical about the XZ plane, there can be no appreciable

lateral forces or moments induced by longitudinal perturbed motions

(u, w, q). The net result therefore is that the perturbed longitudinal

and lateral forces and moments are in general influenced respectively

only by longitudinal and lateral perturbed motions, and of course by

control inputs. This separation of the longitudinal and lateral aero-

dynamic forces and moments is completely parallel and analogous to the

separation of the inertial and gravity terms shown in the Eqs. 4-65 and

4-66 sets. Accordingly, the complete equations are now, by virtue of

Assumption 6, separated into longitudinal and lateral sets.

Qua.s-Steady Flow, Downwash and Sidewash

Unfortunately, the sets are still potentially overcomplicated

because of the implied inclusion in Eq. 4-76 of higher order terms due

to body acclerations. Such effects arise because when the vehicle is

in acclerated motion the air mass in its immediate surroundings must

also accelerate in order to establish the quasi-steady flow. The latter

condition is one where the aerodynamic forces and moments are dependent

only on the velocities of the vehicle relative to the air Mass. Gener-

ally speaking, the quasi-steady forces and moments are of primary

importance and the unsteady flow effects are usually secondary and

negligible. However, the behavior of some modern high speed Jet air-

planes has exhibited marked discrepancies between the predicted damping

and the observed flight test damping of high frequency oscillatory modes

due, at least partly, to nonsteady flow effects. These effects become

more important as the "natural" frequency is increased, as, for example,

by a "tight" control system. Such possibilities should be kept in mind

as perhaps requiring further investigation in specific cases. Never-

theless, we shall, because of its great applicability and essential

simplification, resort to Assumption 7.
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Assumption 7. The flow is assumed to be quasi-steady.

'Because of Assumption 7 all derivatives with respect to
the rates of change of velocities are omitted with the excep-
tion of those with respect to * and 4, which are retained to
account for the effect on the tail of the wing/bodY downwash
and sidewash. This effect is present, as explained below,
even when purely quas-steady ccnsiderations apply.

As an airplane wing travels through the air it leaves behind it an

emanating downwash pattern having a particular distribution and average

value at the horizontal tail location. If the wing lift is suddenly

increased by an abrupt change in w (quasi-steady assumption), the increased

downwash at the horizontal tail (or at the sweptback wing-tip for a tailless

airplane), proportion to tw, does not change immediately. The tail must

actually arrive at the point in space where the wing lift was changed before

it experiences the resulting downwash change; and the time interval, At,

for this to happen is Just the tail length, It, divided by the forward

speed, Ua. That is, for a given time history in wa and a resulting angle

of attack variation with time, c(t), the corresponding downwash time

history is given by (aet/ ))(t - 2./Ua), as depicted in Fig. 4-21.

tet

Fig. 4-21. Tail Downwash Delay
Following an Angle of Attack Input

Recognizing that the Laplace transform of f(t-r) is simply F(s)e - s

allows us' to write the Laplace-transformed net tail angle of attack,

S-et, as

ct(s) = m(s) [1- e-(lt/Ua)s]



The corresponding pitching moment is given by

CM~s) C~t (s) 1 t ftUa) (481

This most general representation of downwash lag effects can become

quite important at high frequencies.* On a less accurate basis it can

be translated into an approximate & derivative by noting that, for the

usual snall values of lt/Ua, e - (lt/ Ua ) s - 1 - (lt/Ua)s. Then,

C1 :j(s) ~ c ( 1 ~ - ) L ] (-2

- CM . 2 1t a
and C*.) c mt

Thus we have shown that aerodynamic partial derivatives with respect to

= Ua& can be included in the equations of motion on the basis of

purely quasi-steady considerations.

An analogous examination of the sidewash field due to a wing/body

combination undergoing lateral velocity perturbations, and the resulting

f6rces on the vertical fin, yields a similar conclusion with respect to

derivatives. Such derivatives are not usually as important as those

due to * motions, and are sometimes neglected. For the time being we

shall carry them along.

Effects Due to Nonuniform Atmosphere

While both the aerodynamic and inertial plus gravity terms have now

been suitably reduced, they are not yet on common ground. That is, the

aerodynamic forces and moments are dependent on perturbations in the

*1. C. Statler, "Dynamic Stability at High Speeds from Unsteady Flow
Theory," J. Aeron. Sci., Vol. 17, No. 4,, Apr. 1950.
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motions relative to the atmosphere rather than to inertial space. To

rectify this condition we need to recognize the existence of atmospheric

winds or gusts, and to note that perturbed motions relative to the atmos-

phere are given by
re ivn y a = X -Xg (4f-83)

where now X, being a general perturbed inertial motion quantity, is

measurable in the body reference frame, and the subscript "g" identi-

fies the wind or gust component of the atmosphere. Substituting this

relationship into Eq. 4-76 and suitably specializing X to those quanti-

ties of remaining interest in view of the simplifying results of

Assumptions 6 and 7, the perturbed forces and moments can be written as

dz = a(U-ug) + a(w-wg) + X-W( g) + a(q-qg) + ax 8

U = (u-Ug) + ;(w-wg) + L(*-g) + a(q-qg) + 5

(4-84)

S-.(v --vg) + L) + 6- (p-pg) + ay (r-rg) + d- 5

dL = 6v _-vg) + Lv- g) + 4 (p-pg) + a-(r-rg) + 8aL 5

bN aN,. 6 N a N 1:N

.N = ;(V-Vg) + -- g) + - (p-pg) + -(r-rg) + ; 5

where the sunmtion of 5 allows for more than one control input, e.g.,

elevator and/or throttle; aileron and/or rudder.

Motions of the atmosphere can be discrete or random; in any case they

are usually characterized by only the three orthogonal components ug, Vg,

Wg. However, variations in space and time of these components can be con-

sidered to supply the additional _st gradient inputs shown in Eq. 4-84, g'

vg) pg qg, rg. Furthermore, for the long wave lengths characterizing atmos-

pheric turbulence, the rotary gusts can be thought of as arising from the
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spatial distributions of linear gust velocities. For example, a rolling
gust, pg, is the result of a spanwise distribution of Wg, as shown in
Fig. 4-22. Here the aircraft ir considered to be encountering an effec-
tive vertical gust at its centerline plus an average spanwise gradient,
dWgby,. ,negative in sign. Since a rolling velocity imparts a spanwise

Fig. 4-22. Illustration of Rolling Gust, pg

gradient in w given by py so that 6w/y = p, the effective pg is simply
W/Y-. For a fore and aft distribution of wg as shown in Fig. 4I-23,

x.q

Fig. 4-23. Illustration of Pitching Gust, qg

a similar decomposition of the gust produces qg = -cg/'x; however this
can be, better expressed in terms of the gust time variations felt by the

aircraft. That is, differentiat'ing numerator and de'nominator,

- wg/pt g _ Swg*

*W. H. Phillips and C. C. Kraft, Jr., Theoretical Study of Some
Methods for Increasing the Smoothness of Flight Through Rough Air,
NACA TN 2416, July 1 951.

B. Etkin, A Theory of the Response of Airplanes to Random Atmos-
pheric Turbulence, Univ. of Toronto, Inst. of Aerophysics, MTIA Tech.
Note 54, Nov. 1960
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Similarly, the yawing gust due to a fore and aft distribution of side

gust velocity, Vg, is given by rg = SVg/Uo.

These last expressions cannot be substituted directly into all of

Eqs. !-84 because of the detailed way in which certain of the derivatives

arise, as explained more fully later in this chapter. For instance, the

rolling-moment derivative &hR stems primarily from the panwise distribu-

tion of forward velocity due to yaw rate, which produces an asymmetric wing

lift distribution. An effective rg due to fore and aft variations in the

side gust velocity seen by an airplane traveling at speed Uo would not

produce a corresponding wing rolling moment. Similarly, the derivative

bXi8Q, usually neglected, is theoretical.ly the result of a vertical dis-

tribution of horizontal.velocity due to .pitch rate; therefore, an

effective qg .due to a fore and aft distribution (as above) does not

"produce forces proportional to bX/ZQ.

In addition to the possibilities noted above, there are higher order

gust input terms and derivatives which are sometimes considered.* Gen-

erally speaking, however, such terms are most appropriate to the detailed

computation of random gust response spectra and are seldom considered

necessary for the engineering solution of flight control problems.

In addition to the small scale atmospheric nonuniformities which

produce winds and gusts in a given layer of air, there are also large

scale nonuniformities with altitude. Th6 most obvious of these is the

variation in density, p, which through the basic Eq. 4-71 relations pro-

duces changes in the forces and moments with change in altitude. The

speed of'sound, a, also varies in general, so that altitude displacement

perturbations at a given speed can give rise to Yach number, M E V/a,

perturbations. If the dimensionless aerodynamic force and moment coeffi-

cients are Mach-number-dependent, as they are except for subsonic or hyper-

sonic flight, then the resulting change in M gives an additional altitude-

dependent set of force and moment perturbations. Finally, there can be

*B. Etkin, Theory of Flight of Airplanes in Isotropic Turbulence-

Review and Extension, AGARD.Rept. 372, 1961.
J. M. Egeleston and W. H. Phillips, The Lateral Response of Air-

planes to Random Atmospheric Turbulence, NASA M R-74, 1960.
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large scale changes in steady wind speed and direction with altitude

(so-called wind shear) which will produce force and moent perturba-

tions on a diving or climbing airplane. Notice that all these effects

are dependent, not .on the vertical perturbed velocity measured along

the body-fixed Z axis, but rather on the perturbed altitude displacement

and rate measured in earth-fixed coordinates.

Detailed investigations of the influence of altitude gradients* and the

exact conditions under which they may be ignored indicate that these effects

are insignificant for most flight situations and fJight control problems,

and, consequently, that a good assumption is:

Assuzytion' 8

-Variations of atmospheric properties, such as density or
speed of sound, are considered negligible for the small alti-
tude perturbations of usual interest.

4 7 MANSION OF TIM DIREC TMUST FOE

Many of the derivatives appearing in Eq. 4-84 will be the result

not only of forces connected with the motion of the body through the

atmosphere, but also of forces arising from flows induced by the pro-

pulsion system. When such flows pass near or over portions of the

vehicle they can produce profound and difficult-to-predict effects on

the derivatives, which usually must be evaluated in model tests employing

properly scaled jets or slipstreams. For configurations which inher-

ently eliminate such slipstream interference (e.g., a subsonic jet

centrally exhausting aft of the tail), the forces and moments associ-

ated with the direct thrust can still contribute significantly to

various derivatives. Among the contributions requiring general con-

sideration are the forces produced on the inlet due to the changed

*I. L. Ashkenas, "Effects of Atmospheric Gradients-on Longitudinal
Control," Section I of Analysis of Several Handling Quality Topics Per-
tinent to Advanced Manned Aircraft, AFFDL-TR-67-2, 1967-

J. K. Zbrozek, Aircraft Behavior in a Vertical Gradient of Wind
Velocity, RAE TN Aero 2810, 1962.

S. Neumark, Dynamic Longitudinal Stability in Level Flight, Including
the Effects of Coriressibility and Variations of Atmospheric Characteristics
with Height, RAE Rapt. Aero 2265, 1950.
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direction of the entering air mass; the moments caused by the angular

velocity of a tube (engine plus tailpipe) containing a moving air

mass; and, finally, the forces and moments resulting from the thrust

itself. AU but the last of these contributions depend on detailed

knowledge of the vehicle layout and powerplant performance character-

istics, and further consideration here is not warranted. However, an

exposure of the direct thrust effects is pertinent since it is simply

accomplished and the effects are always present and sometimes impor-

tant. Accordingly, consider Fig. 4-24, where the thrust line angle

with the initial relative wind, eT, is set by the trim condition and

airplane geometry, and its angle with re.spect to the X axis is fixed

at (eT-co) constant. Then by direct resolution,

E <"c T - %  
XTJ = T cos (eT- )

Z = -T sin (ET-co) (4-85)
X

14V2 = TeT
Relative Wind 

where eT, the thrust eccentric-
ity (positive downward), is not

a function of the axis orienta-

T tion. With thrust a function

only of density, control setting,

Z and airplane relative speed, (some-

times, but rarely, also of mo) the

Fig. 4-24. Thrust Alignment Notation resulting perturbed forces are

dXT = cos (eT - )JV( + V w)+ T

(4-86)
UT= -sin (E. + 6Vw) + T5

Applying Eq. 4-79 (dropping the, "a"' subscript for simplicity) and expand-

ing the trigonometric functions, the partial derivatives are:
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V1 = (cos CT Cos2 ao + sin eT sin ao cos ao)

3- = (cos CT sin a. cos ao + sin T sin2 o)

6XT
y = ;-i(cos eT cos mo + sin CT sin mo)

b- = -- (sin eT cos 2 cx0 - cos eT sin ao cos .)

a- = a- (sin ET sin % cos o - cos C T sin2 ao)

UT --a(sinsin o
%-n as i ETcosaO -cosETsin%)

When combined with Eqs. 4-80 these will provide composite derivatives,

such as X/6U = Ua/ + XT/6U, for the force equation.

Unlike the perturbed forces, the perturbed moment is not obtained

by simple differentiation of the Eq. 4-89- expression because of the

influence of balancing aerodynamic trim moments. To show this, consider

that at trim the total moment must be zero by definition, i.e., no

resulting rotary acceleration and Po = Ro = 0 (see Eq. 4-58) according

to Assumption 6. Therefore the thrust moment is balanced by an opposite

and equal aerodynamic moment having the form of Eq. 4-71, i.e.,

= TeT + P V2ScCM = 0 (4-88)

Neglecting aerodynamic CM variations with Mach number as an additional

effect to those of specific interest here, the moment change is

eT F(VU + 6V '1T] + PV-ScCM(61'u + VW~

But by Eq. 4-88, PVOScCM - 2 ToTVo

so that applying Eqs. 4-79,
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dM =e T  - u cos mo + v sin mo +.',(* F + 1in ) + 8T] (4-89)

We see that proper inclusion of the trim conditions has led to the addi-

tional ° To/V terms.

The foregoing is another good example of the importance of carefully

considering the operating or trim point conditions when evaluating the

force and moment derivatives. In the present case, neglecting such con-

siderations would have led to possibly important errors in the moment

perturbation.

OOCM Lf AR UAZS EO WTION

Now that the individual contributions have been evaluated, the

remaining generally important terms can be assembled into complete sets

of the linearized equations of motion. Before doing this, however, we

will invoke

Assunption 9

Effects associated with rotation of the vertical relative
to inertial space will be assumed negligible; furthermore, the
trim body-axis pitching velocity, Qo0 will be assumed zero.

The vertical rotation effects involve terms proportional to Uo/r,

and W0 /r (see Eqs. 4-65 and 4-66) where r is approximtely 2 x 107 ft.

Even for orbital velocities, Uo I Vg/, such terms are insignificant for

the frequencies of usual concern in flight control problems. However,

the weightlessness terms proportional to U2o/r (Eqs. 4-65 and 4-68) will

not be negligible except for sp6eds less than about 5000 ft/sec. For

speeds greater than this we will later show how the weightlessness terms

can be reincluded in the stability axis set of equations (next article).

In spite of this exception, the first part of Assumption 9 is generally

valid for the great majority of airborne vehicular control situations of

interest. The second part of Assumption 9, Qo = 0, is in keeping with

the first part and the assumed 9o 0 corresponding to straight flight

which leads to Eqs. 4-63; that is, for Uo/r negligible, Eq. 4-63 gives

Qo = 0. In effect Assumption 9 confines our interest to operating points

corresponding to straight flight over an effectively flat earth.
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Turning nov' to the process of assembling the pertinent components

of the perturbed equations of motion, we divide the force equations by

m and the moment equations by the appropriate moment of inertia as in

Eqs. 4-65, 4-66, yielding terms similar to:

iax ax.
T FOU and aFr

Replacing these, respectively, by XuU and ITr and extending this convention

to all the partial derivative terms considerably simplifies the notation.

These quantities are called either "dimensional stability derivatives" or

sinply "stability derivatives"; they are understood to cover all effects

due to relative motion between the vehicle and the atmosphere, i.e.,

basic aerodynamic as well as propulsion system effects, both induced and

direct.

Using this notation, and limiting the gust inputs to those discussed

in connection with, Eq. 4-84 (i.e., dropping Xqqg atd L.rg terms) directly

yields V_- right side of the desired. equations of motion. Since the

Eqs. 4--5 and 4-66 results are no longer of interest in view of Assump-

tion 9, the left side is obtained most directly by Laplace-transfonming

Eq. 4-59 for the trim conditions of Assumptions 6 and 9, Po Qo = Ro

Vo =0 O. This procedure yields:

Longitudinal perturbed equations

su +Woq + g cos o0e Xu(uug) +Xw(w-wg) +X s(w--wg) +Xqq + xBB

sw-Uoq + gsin 0  Zu ( -ug) + Zw(wWg) + Zs(w-Wg+ zqq+--- / + L 58

sq - (u-ug) + Mw (w-wg) + Ms (w-wg) + q + so +  m8b

lateral perturbed equations (4-90)

sv+Uor-Wop-g cos oq = Yv(v-vg)+Ys(v-vg)+Yp(p-pg)+Yr (r- j +

s- -XZ sr = Lv(v-vg) + 4s(v-vg) + Lp(p-pg) +Lrr + 4 ]
Ix

sr XZ sp = Nv(V--vg) + NOs(v-vg) + Np1(8Pg) + Nr8r- + N88sr iz

(4-91)
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The last two equations can be further simplified by substituting the

expression for sr obtained from the yawii. moment equation into the roll

equation (considering a single control input for simplicity), and, similarly,

substituting the roll equation expression for sp into the yawing equation,

as follows:

SNy(v-Pvg) + N~s(v'vg) +N(g)• r-z S~ Ixz'
-vg) +,Is (vIxzvg) + rrIx +Nr +2

I z

which implies, also, (4-92)

Then the roll and yaw equations reduce to

o p r- (v-vg) + s(v-vg) + ( -pg) + r - (14)g + + +

r = N(v-vg) +1Ns(vvg) +N(Pg g Uo

(4-93)

*This procedure was apparently first reported by E. M. Frayn, "The

Simplification of lateral Response Calculations, When the Product of
Inertia Is Not Negligible, by the Use of Modified Derivatives,"

Appendix D in K. Mitchell and E. M. Frayn, lateral Response Theory,
A.R.C. R&M 2 97, 1952, pp. 35, 36. It was later rediscovered and
empsized in the United States by C. N. Tsu, "A Note About the Effects

of Product of Inertia in lteral Stability," J. Inst. Aeron. Sci.,
Vol. 21, No. 7, July 1954, p. 189.
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and we see that the use of primed derivatives eliminates the direct

appearance of the product of inertia terms. The use of the g subscript

gust-gradient input term reflects the fact that there is no Lr gust

gradient term in Eq. 4-91, i.e., (Nr)g Nr/(1 - x

(1)g a(:IxZ1Ix)Nr/1 - I /Ixiz).-

The relationships between the gravity angles, e and 4P, and the motion

parameters, which are needed to complete the foregoing sets of equations,

are obtained by substituting the trim conditions of Assumptions 6 and 9
into Eqs. 4-60; that is, for 0 o Po =Qo = Bo = 0, and the corresponding

= 6o = i, = 0 (Eq. 4-41),

p = q-sin 00

q =(4-94)
r = coso

The associated trim equations, Eqs. 4-58, are

mg sin 0o = Xo

-Mg cos 0o  = zo  (4
0 = Mo
0 = Yo, Lo = NO

where Xo and Zo are composed of the lift, drag, and thrust terms in

Eqs. 4-77 and 4-85 and Mo is given by Eq. 4-88.

The Stability Axis System

Thus far, considerable progress has been tade in reducing the
equations of motion to simple and analytically useful forms. A final

simplification is immediately obtained by orienting the axis system to

rake W_ = 0; that is so the X axis in the steady state is pointed into

the relative wind. Such an alignment results in a stability axis

system which is initially inclined to the horizoA at the flight path

angle, yo (since 00 = yo +o, and ca = tan - Wo /UO = 0).

It is important to recognize that the initial alignment does not

alter the body-fixed nature of the axis system. All perturbed motions
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are still measured in a body-fixed frame; however the alignment of the

frame with respect to the body changes as a function of the operating

or trm point condition. When the airframe is disturbed from the trim

condition, the axes rotate with the airframe and do not change direction

with respect to the airplane; consequently, the perturbed X axis my or

may not be parallel to the relative wind while the vehicle is in

disturbed flight (see Fig. 4-25).

Ae X . Re -.
VIId X " "Y . windl X <_

, Horiz orz

Steady Flight Condition Perturbed Flight Condition

Fig. 4-25. Direction of Stability Axes with Respect to the
Relative Wind During the Steady Flight and Disturbed Flight Conditions

Using this axis system (Wo = O, 00 yo) the Eq. 4-94 relationships,

in Laplace transform notation, give

sq = p +rtan yo

so = q (4-96)

= r
cos ,'o

Incorporating this result, setting Wo - 0, 00 = 7o, considering one con-

trol input at a time (i.e., B rather than EB), and collecting motion-

and input-dependent terms on the left and r ght sides, respectively, the

resulting equations are:

Longitudinal set

(s-XU)U - (XOG+Xv)W + &-Xqs + g Cos 70)0 . Xro [Xug + (Xn + Xr)Vg]

-ZUU + (S-Z oxZ)u + [(-UOZq)s + g sino xS - [xg + (74s + )v,, - Zq

-Slz +N7~)19 + 3 (s - J) = K6- Ia, + Ol. -%w - I~
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Lateral set

[BO1 -Y) -YvJv- (Yps + g cOs lo) + [(Uo-yrW - 9 sinl7J Y88 - YI [t+ Yv)Vg + rYPP' - Yr

-(4+I'D V~ + (r-~ -LOP4r Lib~ [(14s + r.) V+ 4PgJ

-(s+IV) N;P (s - r) r Nib- [(4s +!4)vg. I~pg -(Nr)g~'

Inolusion of Weightlessness Terms in Stability Axis Equations of Motion

As mentioned earlier, the flat-earth assumption, No. 9, limits the

applicability of either the stability axis or body axis sets of equa-.

tions to speeds less than about 5000 ft/sec. However, for the stability

axis set, the specific assumption of Wo =0 allows a significant simpli-

fication without neglecting the weightlessness terms appearing in

Eqs. 4-65 through 4-68. We still omit the generally negligible terms

proportional to Uo/r and Uo/r, but now we ,take note' of Wo = 0, 9o = yo

and the simple relationships of Eq. 4-96. Then, the only added (weight-

lessness) term in the Z equation (4-65) is simply (-U2o/r.) sin yo e . For

the side force equation we note that for Wo = O, Uo = Uo cos yo and,

from Eq. 4-96, s4 cos @o = ss cos yo = r; then Eq. 4-68 reduces to

sv+Uor - g-) cos Yo) - dY

In effect, therefore, we simply replace g by g - U2/r to extend the

applicability of Eqs. 4-97 and 4-98 to orbital speeds.

Further simplification of these equations is possible by dropping

terms found to be negligible in specific instances, but, excepting this,

these are the simplest of all generally applicable sets of the linearized

equations of motion. They are especially convenient for computing and

understanding the basic vehicle dynamic characteristics which are of

course independent of the chosen axis system. However, as already men-

tioned, for situations where the measurement or sensing axes differ

markedly from the stability axes, motions computed in the latter system

must be transformed before they can be compared with flight test results
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.or used in closed-loop analyses. Under such circumstances the use of a

body-fixed system aligned with the sensor axes may be preferable. The

only difference in form between body axis and stability axis equations of

motion for the same set of assumptions is the apparance in the former of

the Wo terms and the use of e0  76 + tan-1 WO/4 o rather than 7o to orient

the g vector. However, the stability derivatives used in each generally

differ because of the axis rotation through ao .

Stability Derivative Transformation Relationships

The complete transformation from stability axis to body axis

derivatives must consider resolution not only of the forces and moments,

but also of the perturbed motions and the changed inertias. Applying

these considerations results in the following relationships- between body

axes., subscript "b", and stability axes, no subscript. Notice that for the

lateral primed derivatives, the transformations are exactly the- same as

those for the basic (unprimed) dimensional derivatives UL/P, N/ r, etc.*

For the unprimed derivatives, e.g., Lp, Nr, etc., the transformed values

of ( P)b, ( N/ r)b, etc., must be divided through by the transformed

(Ix)b, (Iz)b expressions, also given. This simplification accruing to

the use of prime derivatives is due to the fact that they correctly account

for all accelerations about a given-axis due to a given perturbation and

can, accordingly, be treated as simple vectors.

Longitudinal

(ou) = os2 oo- Y +ZU) sin mo cos a o + w sin2

(Xv)b XwcOS2 mo + (Xu- Zw) sin mio cos CL0 - Zu sin2 GO

(*b= X*. cos2 Cmo - Z*sin cx cos CL0

*Edward Seckel, Stability and Control of Helicopters, Academic Press,
New York, 1964.
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(xq;8)q;B COS a.0  Zq;B sin a0

(X)b=

(u )b = zw COB2 a-0 + (Zw -Xu) sinl % Cos CL0 - Xv sin:2 ao

= Zw coS2 ao+X sinmo cos o +(if-99) m

(q)=Z;5COB a + Xq; sin o%(-9

( ; )b M1~bCos a +Xsin m

(Mw)b mw cos ao + mud sin' a

( *)b = MCos m'0

(IY)b '

Notice that the Xu, Xw), Zu, and Z1 expressions are equivalent to those

in Eqs. k -80 and k-87.

(YY;8)Lateral

(YV;)b = v~

(~P~b = COB Go - Yr sin a.0

~YrJ Yr COS CL0 + Yp sin CL0

k~~a~b = %bCsm N,', sin cao

Mb = Cos a 0-N.sin%
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= a C O - ( + sin S O cos o + Nr sin2 %O

"r = L4cos2 o - (Nr- ) sin mo cos mo- N sin2 mo (4-100)Orb

Nv5 = Nv;5 cos o + I ;B sin %

(v)b = N cos + 4 sin a6

(P)b = p COS2 t -(N- sin o cos -o sin2  o

(Nl ) - Nr' CoB 2 MO,+ ( +, N) sin m cos moo p sin2 o. .

(Ix)b = Ix COs 2 a0 + 21xz sin .o cos o + Iz sin 2 co

(Iz)b = Iz cos2 ao - 2 1xz sin o cos ao + Ix sin? mo

(Ixz)b = (Iz-I)sin % cosa 0o + Ixz(cos2 mL - sin2 Co

4.9 DESCRIPIO1 OF HM DM4 IONAL AD 0 nDaMNSIONAL
BTABILMT AXIS DERIVATIVES

The adoption of Assuzptios, 6 and 7 has greatly reduced the number

of stability derivatives appearing in the equations of motion. In this

section each of the dimensional stability derivatives in Eqs. 4-90 and

4-91 is firstgiven a brief physical interpretation, then expanded into

a more basic f6r., and shown to be a function of what are called "basic

nondimensional stability derivatives." Some discussion of these basic

nondimenisional stability derivatives is also given.* The longitudinal-

*There is of course an extensive literature pertaining to the origin
aid astimation of nondimensional stability derivatives. Two compendia are
of particular note,

USAF Stability and Control Datcom, Air Force Flight Dynamics Lab.,
Wright-Patterson AFB, Okho, Oct. 17-(Rev. Nov. 1965).

Royal Aeronautical Society Data Sheets, Royal Aeronautical Society,
London.

and considerable bibliographic material is given in some of the texts,
already referenced, e.g.,

* Edward Seckel, . cit.
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stability derivatives are treated first, and the lateral stability

derivatives are treated later. Equations 4-71, used in the discussion,

are repeated here for reference; but the "a" subscript is dropped for

simplicity, since the derivatives are not dependent on the specific

origin of the relative motions between the vehicle and the atmosphere.

L = CL(l/2)pV2s Z = C.(1/2)v'2S

D = C (1 /2)pV2S L = Cl(1/2)pV2Sb (4-101)
X = Cx(1/2) pV2s M = CM(1/2)pV2Sc

Y = Cy(O/2) pV2s N Cn(0/2) 2Sb

It can be readily appreciated that -the direct conversion from the

nondimensional aerodynamic coefficients to the corresponding forces and

moments requires a common axis system for both. That is, in this instance,

the coefficients must be obtained in, or reduced to, a set applicable to

stability axes. When other than stability axis systems are used for the

equations of motion, the coefficients or the dimensional derivatives must

be converted to, orvset up in, that axis system (e.g., Eqs. 4-99 and 4-100).

While none of the aerodynamic coefficients are guaranteed to behave

linearly with any of the variables, in most cases, for small perturbations

it is reasonably accurate to linearize the coefficients about the operating

point as in Eq. 4-76. Some of the more significant nonlinearities are

noted in the discussions to follow which are, at best, incomplete in this

respect.

Dimensional and Nondimensional Forms

The stability derivatives, dimensional and nondimensional, as we shall

develop and use them are of a particular, commonly-used form. Other forms

appear in the literature relating to aircraft stability and control, but

little or no distinction in terminology is made among them; all are referred

to as "stability derivatives" regardless of the particular form. For pur-

poses of discussion and clarification, it is convenient to illustrate the

four forms most generally found before selecting those to be given detailed

treatment.
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Example-1. Basic dimensional stability derivatives:

a or

Fample 2. Dimensional stability derivative parameters:

Example 3. Basic nondimensional stability derivatives:

Cl h
Cp =(pb/2U) =

Example 4. Nondimensional stability derivative parameters:

1P = (1)(b)2ci ; heek--- Clp where I& =- -

The equivalence between forms like L/ P and h/ /p shown above comes about

because we are normally dealing with trim conditions which eliminate

accelerated steady motions, thereby making dP/dp = 1. According]y we can,

and will, express most derivatives in terms of either upper or lower

case (perturbation) symbols to suit our convenience.

It may be seen from the examples that the dimensional forms

(Examples 1 and 2) are concerned with direct forces and moments (or

accelerations), and with motion velocities, whereas the nondmensional

form (Examples 3 and 4) is concerned with force and moment coefficients

and with nondimensional velocities (e.g., pb/2U is the nondimensionalized

form of the rolling velocity, p). It may also be seen that the basic

stability derivatives (Examples 1 and 3) do not involve inertial quanti-

ties, whereas the stability derivative parameters (Examples 2 and 4) do.

Conversion relations among these four general forms and also specific

mathematical definitions of individual derivatives are given in Tables 4-I

*and 4-4 at the end of this chapter.

It must be emphasized that the specific notation and the specific

definitions used here are not necessarily employed by a; writers on

the subject. For example, Jones* in a basic aerodynamic reference work

*B. Melvill Jones, "Dynamics of the Awrnplane," in W. F. Durand) ed.:
Aheory Div. N, Vol. V, Durand Reprinting Committee, Pasadena,
Calif.:7 143. Reprinted by Dover Publications (Vols. V and VI bound in
one volume), New York, 1963.

4-70



uses the notation 19 to signify the partial derivative ikp, whereas

most of the present-day writers use Lp (or TV) to represent the stability

derivative parameter (1/Ix)QiL/6p). On the other hand, almost everyone

uses the same notation for such basic nondimensional stability derivatives

as CjP, CL., and .

Of the four forms listed above the two of most practical importance

are the basic nondimensional stability derivative (e.g., Cip) and the

dimensional stability derivative parameter (e.g., Lp). The basic non-

dimensional form (Cl P) is imortant because correlation between the aero-

dynamic characteristics of different airframes or the same airframe at

different flight conditions is most easily attained with these stability

derivatives; as a result, aerodynamic stability derivative data from wind

tunnel tests, flight tests, and theoretical analyses are usually presented

in the basic nondimensional form.* The dimensional stability derivative

parameter form (L.) is important because it leads directly to the numerical

coefficients in the sets of simultaneous differential equations describing

the real time dynamics of the airframe. Thus, stability derivatives in

this form are useful in determining the analytic transfer functions of

the airframe and in setting up its mathematical model on an analog computer.

Accordingly the discussion dealing with the evaluation of stability

derivatives makes use of the basic nondimensional stability derivative

form (Clp ), and that dealing'with airframe transfer functions makes use

of the dimensional stability derivative parameter form (I ).

Perturbation Effects on the Total Velo6ity

It should be noted that the quantity V2 , which appears in Eq. 4-1i01

is the square of the total linear velocity. In the stability axis system

*An important exception to this otherfise general state of affairs
occurs for the low speed range of vehicles capable of hovering operation.
For V-0, as in hover, dyn,=ic pressure (P/2)W- is a poor measure of
the aerodyncmiLc forces on the vehicle which are more appropriately related
to parameters indicative of s~ipstrearn (or jet efflux) velocitie.s, e.g.,
R. L. Stapleford, J. Wolkovitch, R. E. Magdaleno, C. P. Shortwell, and
W. A. Johnson, An Analical Study of V/STOL Handling Qualities in Hover
and Transition, VIEW r1965.
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the total linear velocity during the steady flight condition is equal to

U0, which is the velocity in the direction of the X axis. When disturbed

from steady flight, the airplane can have velocity components Uo+ u, v,

and w directed along the X, Y, and Z axes, respectively. During disturbed

flight the magnitude of the total linear velocity can be expressed as

or V = U2 + 2Uou + u2 + v2 + w2  (4-102)

In Assumption 5, u, v, and w were assumed to be very small so that their

products and squares could be neglected. Thus,

V = o 2UoU

U o(i + U) = U

Also, when 1 is very much greater than u/Uo, a very good approximation

is U I Uo. Therefore,

V ! U & Uo  (4-103)

Thus, V, Uo, and U can be used somewhat interchangeably for stability

axes and the conditions implicit in Assumption 5.

Longitudinal Btability Derivatives

The longitudinal force derivatives have already been treated for a

general axis system (see Eq. 4-80); however, they are included aid

rederived in the present discussion for the sake of completeness.

Effect of u, the change in forward speed

As an airplane increases its forward speed, the lift, L, drag, D,

and moment, M, change. Generally, but not always, each of these quanti-

ties increases. Also, the thrust component in the flight direction, Tx,

changes.
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XU  Since drag acts along L

the negative axis,

an increase in drag contributes Uo+U _

a negative X force; conversely an

increase in Tx contributes a posi- Wind X Tx

tive X force. The change in X

force due to a change in forward

speed can be expressed mathematically Fig. 4-26. Variation of Lift, Drag,

in the form and Pitching Moment with Change in
Forward Velocity

-D =Tx

- SU~a ruu + -U

1. U = 1 (-D + Tx)(-14

Using the drag equation from Eq. 4-101, substituting U for V in accordance

with Eq. 4-103, and performing the indicated differentiation yields

-PSr [,2 CD 1 ,]+,1 T
Xu 2m[ 7U m WU

and
-PS u + ]C , 1. -Tx (4-105)

The drag coefficient, CD, is the equilibrium, drag divided by PU2S/2.

By definition, it is always measured along the direction of the relative

wind; hence the equilibrium drag coefficient is measured along the negative'

equilibirwn, X axis in the stability axis system (Fig. 4-26) and is always

positive in sign. In contrast, it should be pointed out that the deriva-

tive Xu is at all times measured along the X axis and is always negative

in sign.

The equation for thrust can be written in a form similar to that of

the lift and drag equations in Eqs. 4-101:

T p2S

T= 2 S (4-106)
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However, this form is misleading since the coefficient CT is basically

not aerodynamic in nature. In fact, for Jet engines the thrust, T, is-r
more nearly constant than is CT. Accordingly, the most generally

applicable expression for the thrust contribution to Xu is that given

in Eq. 4-105, above, where the partial derivative ZT/U is- obtainable

from powerplant performance estimates.

The change in drag coefficient with varying forward velocity for

constant angle of attack and altitude, )CAU, can arise from two

sources-Mach number effects and aeroelastic effects. In most cases

the latter are small anad can be neglected. Changes due to Mach number

are also small and negligible for low subsonic and high supersonic Mach

numbers, but become appreciable in the transonic region (0.8 < M < 1 .2)

where a large increase in drag occurs.

The appearance, in Eq. 4-105, of the nondimensional grouping

(U/2)(CA/ U) suggests a simplified notation, viz:

u 
(4-107)

where CX is any basic nondimensional stability derivative. Accordingly,

XU -PSU (C + CD) + I Tx (4-18)

The direct thrust contributions to ail other derivatives is

generally negligible for conventional airplanes, except as it affects

the equilibrium, operating point, conditions. Accordingly, its possible

variation with other perturbations, and about or along other axes, is

not considered in the formulation of the remaining derivative expressions.

Zu Since lift acts along the negative Z axis, an increase in

lift due to a change in forward. speed"contributes a negative

Z force:

= z -%)&Z = UU = STU

i" = 1 Z =-1 )L (4-109)
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SBy noting the similarity between Eqs. 4-109 and 4-104, .and between the

lift and drag equations of Eq. 4-101, we can inuediately write

zu = - [c + CL] (4-110)

The lift coefficient, CL, is the equi.librium of trim lift divided

by PU2S/2. For the trim conditions a-sumed (Assumptions 8 and 9) for

the stability axis equations of motion the trim lift is equal to the

airplane weight times cos 7o minus the upward thrust component normal

to the flight path. By definition, lift coefficient is always measured

perpendicular to the relative wind and is positive upward (Fig. 4-26),

and so the equilibrium lift coefficient is measured along the negative

equilibrium z axis of the stability axis system. On the other hand, Zu

is always measured along the positive Z axis and is positive downward.

Low values of CL are associated with low angles of attack and high speeds,

whereas high values of CL are associated with high angles of attack and

low speeds.

The derivative CL is the nondimensional change in lift coefficient

with variations in forward velocity for constant angle of attack and

altitude, (U/2)( CJ/U). CLu arises from Mach number and aeroeastic

effects. The magnitude of the total CLu can vary considerably and its

sign can change, depending not only on the airframe geometry and its

elastic properties, but also on the Yach number and dynamic pressure at

which it is flying. The magnitude of CIU is negligibly small for low

speed flight, but it may reach a considerable value near the critical

Mach number of the airframe.

The change in moment caused by a change in forward speed can

be expressed as:

1 8M
Mu = 4-7 (4-111)
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The same mchanics used in the expansion of Xu can be used to derive Mu:

Mu = (4-112)

Here, we must remember that CM represents only the aerodynamic portion

...of the total trimmed pitching moment, and that the latter is, by

Assumptions 6 and 9, zero. Thus, in general there will be a nonzero CM

only in the presence of thrust asymmetry (Eq. 4-88).

The derivative Ck. is the nondimensional change in pitching moment

coefficient with variation in forward velocity for constant angle of

attack and altitude, (U/2)(6)CMU). The agnitude of CMa can vary con-

siderably and the sign can change, depending on such factors as the air-

frame's geometry and its elastic properties, and the Mach number and

dynamic pressure at which it is flying. This derivative can arise from

three sources -thrust or power effects, Mach number effects, and aero-

elastic effects. The early treatment of CMu was as a power effect

arising from the propwash of propeller-driven aircraft. Today, because

of the use of jet engines and the associated alleviation of power effects

on dynamic stability, the 4u from slipstream effects is small except

for "unconventional" VTOLs. (The direct thrust effects themselves were

thoroiughly discussed earlier in connection with Eq. 4-89.) On the other

hand, the contributions to Cku due to Mach number and aeroelastic effects

-have become increasingly important.

Effect of wp the change in speed along the Z axis

In Fig. 4-27 the quantities L LO

L. and Do represent the lift and M D

drag acting on the airplane dur- U0  e.-"

ing the steady flight condition. X -

The lift and drag always act,

respectively, normal and par- Relative,,

allel to the relative wind.

According to the definition of Fig. 4-27. Variation of Lift and Drag

stability axes, the relative with Change in w
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wind during the steady flight condition is parallel to the X axis.

Therefore the only component of linear velocity during the steady

flight condition is Uo; and Lo and Do are, respectively, perpendicular

and parallel to the X axis. When the airplane is disturbed from steady

flight so that it has a component of velocity, w, along the Z axis as

well as a forward velocity, Uo, the relative wind shifts to a new posi-

tion, as shown in Fig. 4-27. This shift results in an increase in angle

of attack, denoted by the perturbed angle m. (The trim angle of attack,

mo, is zero by definition.) The quantities L and D in Fig. 4-27 represent

the lift and drag acting on the airplane during the disturbed flight condi-

tion, and they act normal and parallel to the relative wind. The relative

wind acts in the direction opposite to the vector sum of Uo and W.

Xw  The perturbed X forces due to w are found by resolving L and

D along the X axis and taking the partial derivative with

respect to w,

X = L sin m-D cos m

-o (L cos mo +  sin mo + D sin mo -  Cos ao

Neglecting perturbation products (Assunption 5), and recognizing mo= 0,

Xw = m oI- -  L- (4-113)

Substitution of the values of lift and drag from Eq. 4-101 into Eq. 4-113

yields

1 [P U2 C ('PSU2 D)]
Xw -- - CD)

XW = -S (CL-ODm) (4-114)"

where CD. ) CD/m.
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r The derivative CDa is the change in drag coefficient with varying

angle of attack. When the angle of attack of an airframe increases from

the equilibrium condition, the total drag increases, hence CD) is positive

in sign. By far the largest contribution to CD, comes from the wing, but

there are small contributions from the horizontal tail and the fuselage.

CDO is generally a nonlinear function of m, but it can be considered

piecewise linear for small perturbations.

2 The change in the Z force due to w can be found by resolving

the forces in Fig. 4-27 along the z axis and performing opera-

tions similar to those used in the derivation of Eq. 4-I 14:

Z = (CI, + CD) (4-115)

The derivative CL, is the change in lift coefficient with varying

angle of attack; it is commonly known as the "lift curve slope." When

the angle of attack of the airframe is increased, the lift force will

increase more or less linearly until the wing stalls. The derivative

CLm is therefore always positive in sign at angles of attack below the

stall. The total airframe CL is m.e up of contributions from the wing,

the fuselage, and the horizontal tail. Ordinarily the wing accounts for

about 80 to 90 percent of the total Cl., although it nay account for

less if the size of the fuselage is large in comparison with the size

of the wing.

Aeroelastic distortion of the wing, under the incremental loads due

to an angle of attack change, can alter its geometric twist to either

increase or decrease the net change in lift and therefore the value of

CL,. Figure 4-28 illustrates how pure bending deflections of a sweptback

wing cause a reduction in the local angle of attack (washout) of the tip

region. Viewed along the flight direction, the trailing edge moves

up with respect to the leading edge ( , producing a negative increment

in net angle of attack. On the other hand, airloads concentrated forward

of the elastic axis tend to t-ist the wing sections to a positive increment

in angle of attack.
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I Vertical (bending)
deflection as seen
looking aft normal

2 to elastic axis

x

Fig. 4-28. Effect of Wing Bending
on Local Angle of Attack

The change in moment due to w is most easily visualized by

observing the components of the total lift and drag that act

on the wing and the horizontal tail. Figure 4-29 shows these components.

The subscripts W and t refer to

wing and tail. A vertc.l veloc-

ity, w, causes a change in angle Dt

of attack of both the wing and

the horizontal tail, and conse-

quently changes the lift and Fig. 4-29. Lift and Drag Acting on
the Wing and the Horizontal Tail

drag acting on these surfaces.

The resulting moment can be found by sunming the moments about the center

of gravity caused by each of these forces to give the nondimensional

coefficient CM (Eq. 4-101) as a functionof m - w/Uo. In terms o" this

coefficient
M =PU2Sc

2 4

IM pUSc CM

and PSUc CMi (4-I16)

where C% CA .
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The derivative CM, is- the change in pitching moment.oefficient
with varying angle of attack, and is commonly referred to as the "longi-

tudinal static stability derivative." For a positive increment in angle

of attack, the increased lift on the horizontal tail causes a negative

pitching moment about the center of gravity of the airframe.- Simulta-

neously, the increased lift of the wing causes a positive or negative

pitching moment, depending on the fore and aft location of the lift

vector with respect to the center of gravity. These contributions

together with the pitching moment contribution of the fuselage are com-

bined -to establish the derivative CM . Because of the distributed loads

involved, C can be strongly influenced by aeroelastic distortions of

the 'wing, tail, and fuselage. However, the mjo influence on the mag-

nitude and sign of the total Ck for a particular -airframe configuration

is the center of gravity (cig.) location. In fact,. Nm is propoitional

to the distance between the c.g . and the aerodynakic center (a..c.), the

latter being the point about which the. increment of lift due to a change

in angle of attack effectively acts. If the center of gravity is n 'the

"rodt.mpc center % ,.s zero; if ahead of the aerod mic center is

negative, and the airframe is said to-possess static longitudinal stability;

If aft of the aerodnamiL, center % is positive, and the airframe is then

statically unstable, or the aerodynamic center, can have important

configuratin-depender:± nonlinear variations with ms but can generally be

considered piecewise linear over a limited range. Also the aerodyn~uic

center generally moves aft in going from subsonic to supersonic flight.

Another way of expressing static stability is in terms of the derivative

-CWCL - -C VdC. This quantity, called "static margin," is identically

equal to the x-distance from the a.c. to the c.g. divided by the reference
chord length* l.e.,

C tCL -CaMc./

where x is measured positive forward. A positive static margin correpponds
to statically stable conditions, and-a negative kI4/aCL and CM.

*e.., Etkin, 02. cit.
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Static stability, characterized by either Cj or Cd/ L. is perhaps

the most important of the longitudinal derivatives, and is a major factor in

determining the response of the airframe to elevator motions and to gusts.

fefeot of , the rate of ohange o speed &)= the a eaxs

In the earlier discussion

of unsteady and quasi-steady

flows, the existence of a

force due to * was explained X-u-

on the basis of quasi-steady

flow considerations. It was

pointed out that this rate of

change of speed along the Z Z

axis results in an effective Fig. 4-0. Lift and Drag Changes
on Horizontal Tail Due to Plunging Acceleration

change of the angle of attack

of the horizontal tail. This change in angle of attack causes changes

in the lift and drag acting on the horizontal tail. These are #cremen-

tal forces and are represented byATt and M t in Fig. 4-30.

The change in drag on the horizontal tail is the main con-

tributor to the change in the X force. But the drag on the

horizontal tail is generally sell in comparison with the total drag,

and the increment in the tail drag due to * is even sualler. Therefore,

X is considered zero in the first approximation.

Z* The change In lift on the horizontal tail causes a sor mes-

Important change in the total Z force which, in terms of the

total lift .coefficient, can be written

1 Z Z -1aL -nSU aCL

Z az C1 im l U (4-117)

To form,a.,,ondimensional coeeficient, Eq. 4-117 is multiplied and divided

by c/2U:

2m 2U a(dc_/2U) (4..118)

where CL& E 6i &2)
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The derivative arises essentially from two independent sources-

r an aerodynamic time lag effect, as explained in the discussion of quasi-

steady flow, and various "deadweight" aeroelastic effects. For low speed

flight, CL4 arises mostly from the aerodynamic lag effect on the horizon-

tal tail and its sign is positive. However, even tailless aircraft have

Crj&'s due to the fact that the wing must accelerate the air mass in its

path as it accelerates (apparent mass effect which goes beyond quasi-

steady flow assuition). For high speed flight the sign of CL, can be

positive or negative, depending on aeroelastic effects such as wing

twisting due to the deadweight moments of projecting nacelles, and fuse-

lage bending caused by the deadweight of the aft fuselage (see Fig. 4-31).

The effect of %. on longi-.

tudinal dynamics is essentially M t

the sae as if the airframe's Flex

mass or inertia were changed in Rigid

the equation relating the forces

in the Z direction. This Fig. 4- 31. 4 Effect on Aeroelastic
Distortion Due to Fuselage Flexibility

effect is very eill, and for

this reason CL& is often neglected in longitudinal. dynamic analysis.

This derivative can be expressed in terms of the total moment

coefficient as:

Ma M bBC2 (4-~119)

where Cm& -

The derivative Cm& is produced by the same aerodynamic and aero-
elastic effects that proluce, CI. However, whereas C16 is usually

negligible, CM& is relatively important in longitudinal dynamics because

it dots have a significant, if not powerfi, effect on the damping of

the short-period mode. A negative value of Cm& which is its normal

sign, increases the short-period daxping.
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Iffect of ~,the vitoh1bg veloity

In the light of the quasi-stead0y flow assumption (Assmp-
Xq tion 7) the major effect of the airplane's pitching about

its center of gravity is to

cause an increase in the angle .At

of attack of the horizontal

tail. AsIn the case of the X U

effect of *, the resulting

drag increase is neglected, in .og.

the first approximation and Xq 1 tq
is pormzlly set equal to zero. Z =-o

The incremental lift -prouce a ane. b, Lift and ra Chanes
produces a change on'Horizontal Tail Due t6

both in the Z force and in pitch- Pitching Velocity

ing moment. The expressions for Zq and Mq can be derived as follows:

U L MU CL c 6CL
3- 23j _3* U TqcT-2U

Zq CZ (4-120)

where CL - 6CL/6(qc/2U), and

6M pU 2c 6CM OS__._c___60
S 2 'N TJTqT71 aoM

M * -L6M iSj2 (4-121)

where CM aNrA(qc/2u).

The derivatives COI and C are the change in lift and moment

coefficients, respectively, with pitching velocity at a fixed

anglo of attack. As the airframe pitches about its center of gravity,

the fore and aft angle of attack distribution changes, and lift forces

develop primarily on the horizontal tail and wing (seeFka. 4-33). These

produce contributions to both derivatiyeln positive in sign for CO and

negative for CMI.
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Flight Path

ARelative 
wind

distribution
produced by

steady q

Relative wind distribution
produced by constant (x

Fig. 4-33. Lift and Moment Coefficient Change
Due to Variation in Pitching Velocity

There are also contributions because of various "deadweight" aero-

elastic effects. Since the airframe is moving in a curved flight path

due to its pitching, a centrifugal force is developed on all the compo-

nents of the airframe. This forceocan cause the wing to twist as a

result of the deadweight moment of overhanging nacelles, and can cause

the horizontal tail angle of attack to change: as a result of fuselage

bending due to the weight of the tail section. In low speed flight both

CLq and CH, come mostly from the effect of the curved flight path on the

horizontal tail, and their signs are positive and negative, respectively.

In high speed flight the signs of either can be positive or negative,

depending on the nature -of the aer6eJAstic effects.

As with CI , the effect of CLq on longitudinal stability is usually

very sel and it is ordinarily neglected 'in dynamic analyses. On the

other hand, C~q is very important in longitudinal dynqomics because it

contributes a large portion of the damping of the short-period mode for

conventional aircraft. As pointed out, this damping effect comes mostly

from angle of attaci changes at the horizontal t.ail,, which are propor-

tional to the tail length, it (i.e.) AaT F qlt/U). The tai-l length is

also the lever arm converting tail lift into moment " therefore CMq is

proportional to I .
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Uffeos of bl, the change of Power' plant control, setting (throttle)

An increase in power plant

control setting yields an c W_\

increase in thrust having the X

general orientation shown in

Fig. 4-34. By simple resolution,

% = (10A)( OT/ ) cos T z

ZB = (-1 /z) (c/)T ) sin c Fig. 4-34. Resolution of Thrust Into
Forces and Momenis=(-zTIiy)()io j) COB

Further breakdown of these derivatives into conventional nondimensional

coefficients is not varranted, as noted above in the discussion of Xu.

Mfeots of aerodpaa oontrol nufaqe defl.eotions

Aerodynamic surfaces pertinent to longitudinal control include

elevators, stabilizers, flaps., slatse, dive brakes, etc. Where applicable

the positive direction is taken as that giving positive lift, as in the

definition of positive a (see Fig. 4-35). Usually, deflection of such

surfaces, in addition to

"x producing the sought-for

primary effect (e.g.., tail

XZ +Be  lift to produce a pitchirg

moment for an elevator, or

drag to produce longitudl.-

hal deceleration for a dive
Fig. 4-35. Lift and Moment Chanes brake), also produces second-

Due to Surface Deflection

ary forces and moments.

Generally) therefore, we must consider contributions to the X and Z

forces and to the pitching moment, M, as follows:

1 3-8 CU26 where CD8a D

___ CL,
= O % L where CLu- - (4-122)'

1 M C where C CM
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The general forms of Eqs. 4-122 are specialized by suitable subscripts

for particular control surfaces, e.g., be for elevator, 8f for flap,

8B for dive brakes, etc.

The elevator is, of course, the primary longitudinal control surface

and its function is, through applied pitching moments, to control the

angle of attack of the airframe in equilibrium and maneuvering flight.

This. function is usually considered to be the most important of all the

control functions about the three axes, so the elevutor control effec-

tiveness, Cb e is of great importance in airframe design. Its design

value is determined by the anticipated fore and aft center of gravity

travel, and the vximum CL capability of the wing as influenced by high

lift devices. In general, the larger the center of gravity range and

the higher the mAximum CL, the larger the required value of CMe. Super-

sonic flight may impose additional requirements because of the attend-

ant aft movement of the aerodynamic center. The sign of CMe depends on

the location of the elevator, fore or aft of the e.g.; for aft locations

(as in Fig. 4-35) and the elevator sign convention used here, q% is

negative.

CLbe is always positive in accordance with the convention used here

to define positive control deflection as a producer of positive lift

(Fig. 4-35). On conventional aircraft with the horizontal tail mounted

at an appreciable distance aft of the center of gravity, CL~e is usually

very small and its effect is relatively. unimportant, except for auto-

matic control involving vertical acceleration feedback. The value of

Cbe is invariably smiller than CLe because of the usual variation of

drag with lift and it is normally negligible. However, on tailless air-

craft having small effective elevator lever arms, the values of CL5e and

CD6e are relatively large with respect to the required C14e and neither

can be safely neglected. The sign of CD8e can be positive or negative,

depending on the trim position of the elevator end the trim angle of

attack.
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lAteral 0tabIUty DrSfvatives

S]Effeot oft v, the ohange In side velocity

When an airplane is disturbed

from steady flight so that it has a 71

side velocity, v, & force along the

Y axis and moments about the X and

£ axes are developed. The major v 2

forces caused by the side velocity

are labeled 1 ,F 2 , F, andF 4 in Uo
Fig. 4-36. F1 arises from the

change of the angle of attack of X

the vertical tail. F2 is the side P1odra Angle

force acting on the fuselage, and A"

P3 and F4 are differential lift y_

forces acting on each semispan

of the wing, due to its "effective

dihedral." Fig. 4-36. Forces Accompanying
Sideslippirg Motions

From Eq. 1 -I011, the
side force equation

has the form

so that

and, in terms of 0 tan "r v/Uo I v/Uo,

I aY ,us 41)

where 6CY/P- .Cyp

The major portion of Cyp normally comes from the vertical tail, with

small contributions from the fuselage and wing. Xt is usuallynegative

in sign for practical airframe configurations; i.e., the side force

opposes the sideward motion. However, the forces on a slender fuselage
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can actually be in the aiding direction for high angles of attack.*

These effects can apparently override the resisting tail forces to pro-

duce positive values of Cy, for certain (as yet rare) configurations

with low-aspect-ratio wings which operate at high angles of attack.

Small (or positive) values of Cy1 are'undesirable because the

resulting small (or reversed) side forces make the detection- of side-

slip difficult; accordingly, coordination of banked turns becomes a

piloting problem. Also, such values of Cy contribute little to the

damping of the dutch roll, whereas normal (negative) values of Cy. can

contribute substantially to the total damping.

U The rolling moment, L, about the X axis is caUsed mainly

by the components F and P4 which act normal to the wing

and by F1 at the fin center-of-pressure which can be either above or

;below th X axis. From Eq. 4-101,

L = Cl

and d= _3 -- -W

1 jp (4-124i)

where Cip = ClP. Also,

=O V O 2 x  CI A

Cip, the change in rolling moment coefficient with sideslip ancle,

is usually referred to as the "effective dihedral." This nomenclature

is a holdover from earlier days when, in fact, the value of Cl was

governed largely by the geometric dihedral built into the wing

(Fig. 4-36). For positive geometric dihedral Cl, is negative, and this

leads to some confusion because negative values of Cip are referred to

*Bernard Spencer, Jr., and W. Pelham Phillips, Transonic Aerodynanic

Characteristics of a Series of Bodies Having Variations in Fineness
Ratio and-Cross-Sectiomi Ellipticity) N~ASA TN D-262, Feb. 1965.
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as "positive dihedral." For modern configurations the wing contribution

to Cp is a function not only of geometric dihedral but, more so, of

sweep, aspect ratio, and angle of attack. In addition, the wing loca-

tion on the fuselage, high or low, contributes negative or positive

increments, respectively, to Clp-and the direct forces on the vertical

tail contribute decreasingly negative increments as the fin moves down

with respect to the x axis with increasing trim angle of attack. While

the general overriding importance of the wing contribution to CIO can-

not be denied, there my be flight conditions where it is small relative

to the vertical tail or wing/fuselage contribution.

O is very important in lateral stability and control, and it is

therefore imperative to consider it in the preliminary design of an air-

frame. It is involved in damping both the dutch roll mode and the spiral

mode, and also in the mneuvering characteristics of an airframe,

especially with regard to lateral control with the rudder alone near

stall. To improve the dutch roll damping characteristics of an airframe,

small negative values of are desired but difficult to obtain in gen-

eral because of the influences noted above.

The yawing moment, N, due to a side velocity, v, is caused

mainly by the force on the vertical tail, F1 . The forms of

the stability derivatives Nv and Np are similar to those of Eq. 4-124:

Nv u (4-125)

AO 21z n

is the change in yawing moment coefficient with variation in

sideslip angle. It is usually referred to as the static directional,

or "weathercock," stability. The major portion of CnA comes from the

vertical tail area and lever arm, which stabilize the body of the air-

frame Just as the tail feathers of an arrow stabilize the arrow shaft.

The CnP )ntribution due to the vertical tail is positive, signifying

static d5 ctional stability, whereas the Cn, due to the body is nega-

tive, signi ,..ng static directional instability. There is also a
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contribution to C from the viing, the value of which is iusually positive

but very small compared to the body and vertical tail contributions. Since

both the major contributions depend essentially on the dimensions of the
body, e.g. variations, which are limited by longitudinal considerations to

a small fraction of the body length, have little effect on the value of Cn.

Increasing supersonic speeds gencrally have a deleterious effect on

because the fin lift curve slope decreases' whereas the body manents remain

about constant. Also, for high angles of attack, the fin may be immersed

in the wing-bodV wake with consequent drastic reductions in Cn •

The derivative Cn is very important in determining dynamic lateral

stability and control characteristics. It primarily establishes the

natural frequency of the dutch roll oscillatory mode of the airframe,

and is also a factor in determining the spiral stability characteristics.

A high value of Cnp aids the pilot in effecting coordinated turns and

prevents excessive sideslip and yawing motions in extreme flight maneu-

vers; hovever, in rough air, excessive Cn magnifies the disturbances

due to Side gusts. There are cases on record where a reduction in the

vertical tail resulted in improved over-all (rough and calm air), dynamic

properties.

Effect of t, the rate of abange in side velocity

The existence of quasi-steady forces and moments due to 4 was
explained in the'discussion of unsteady flow as arising from sidewash

lags which produce angle of attack variations at the vertical tail.,

The change in side force with 4 in terms of the side force
coefficient, Cy, is

a¥ I ay PSUo acv

SU

To nondimencionalize, mltiply and divide by b/2U, whereby

1J Y Q Cy-I.126)

wherc eye Cy/ (I b/2U).
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31. Tfic! c%!iYj. i roi--it.Ira--t L., b, tenri.L; of thv roll .:ernt-

*COefCMtC'ia.,,JI Cj, is

arid ern~ec.o'lzp , es above;c'

1 ~ FpSUob 2

-j~-C16 (4f-127)

where c cb(b/u)

Ii The corresp~onding yawine rnmcnt derivative is,

UOK E 1 N pSUob 2 (416

where C11 CnA( b/2U).

qeriertlly se kirZ, not too mach is known -of the nondim~nsiona).
aerodyrrit darlitlves appearlng in the foregoing esrv~ons. In fact,
an concerns, the usual formutat~lon of the rlrd-bod ' equaitlons of' motion,
all thoew derivativers are ganewCL1y nc -Iected. fHowever, thc-re arc cakes
where the observed dutch roll ds~npinv c~ai bo accounted for only by includine,
the signif'icant Cjj offecti;, when Cq is th. rc*.me order of' meznit1V1OeA as .
The difficulty is that there is no eood vowy of' cstimoting, or of' kniowine
a priori f'or which conf'Igurations it may be important,

Aside frrom acrodyna.Pdc larg effects) deritvaives~ also arise due to
Acroolantic offectse Fie-. I1-37 shows how the af't fasclago dUstortion due
to lateral acceloration of' the distribitcae mass, produces i vertical. tail
angle of' ettack and a CO~ICOmlitn acrodyjnnuxc side f'orce.. This :sido force,
proportional. to ' , reduces the airplae Is resistextee to, lateral motion (i. se.)
'its effectivye mass), but orily by a negligible aowi; theref'ore, even con-
uidering such aeroclantic ef'fectsp Y4 is n(_lig~bJle Usually the rollin&-
moament contributed by the side f'orce vill ftl, .o be ne§licible because of 'the
smk&U vertical momient am involved. This leaves the yawin,, rio.mnerx deriva-
tive, N1 P an the most probable sign-Ificatit contribution of' acroeltntic
distortions mid aerodyna:te lag, ofocts.
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Fig. 4-37. Distortion Effects Due to 4

Effect of , he Change in rolling velocity

The rolling velocity, p, causes the various forces shown in

ig.-4-38.

F3 • 
4 7'IP

L Y F1I L

Up 2U i(b'U

ie~vcWind eate idD2

Down-Going Wing Up-Going %in&

Fig. 4f-38. Forces Arising f'rom Roll Rate Pertuxrbations, p

y The change in the Y force with p, illustrated as F1 acting on

the vertical tail in Fig. 4-3~8, is expressed as:

PU SX

To form a nondimensional coefficient, multiply and divide by b/2U. Then,,

1 y _ U2 Sb

Yp ~ m p U 7

pSby (4-129)

where Cyp =Cy/-(pb/2U).

4-92

"| •



sign of ip can be poitivye or ne ptive, dcpendire cc the ertical

tail location with respect to the X axis, as a function of .angle of attack3

and also depending on the sidewash frum the wing. Since % is of very

little importance in lateral dynamics, it is common practice to neglect this

derivative in lateral dynamic calculations.

ip There are also incremental forces acting on the wing, illustrated

as F2 and in Fig. 4-38. The vertical velocity of the down-

going wing at any station a distance 13 from the XZ plane is p 13• This

vertical velocity increases the effective angle of attack at this station

by an amount Am3 (where bE3 = pI3/Uo). This increase in angle of attack

increases the lift and.drag acting oa the wing. The effective angle of

attack of the upgoing wing at a station a distance 12 from the XZ plane is

decreased by an amount bm2 (where 62 = pl/Uo). This increase in effective

angle of attack decreases the lift and drag acting on the wing at this

station. Usually the change in drag force is a relatively negligjible con-

tribution to the change in rolling moment due to p, which can be expressed

as:

= PU2Sb Cl

Multiplying and dividing by b/21J,

1 L PUSb2

where Clp -Ca/(pb/2U).

The derivative Clp is the change in rolling moment coefficient with

change in rolling velocity and is usually knloim as the roll damping deriva-

tive. It is composed of contributions, negative in sign, from the wing and

the horizontal and vertical tai.ls. However, unless the size of the tails is

unusually large in comparison with the size of the wing, the major portion of

the total Clp comes from the wing; and the variations in Clp with Mach number

and m closely follow the variations in wing lLft-curve-slope, Cj,.

Clp is quite important in lateral dynemics because it, alone, essentially

determines the damping in roll characteristics of the aircraft. Its value

is more or less given by the wing planfonn geometry which is determined
/
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by other rore irT.ortwnt design criteria. The velue of C does

directly affect the design of the ailerons, however, since Cip in

conjunction with C16a establishes the airframe's maximum available

rolling velocity; this is an important criterion of flying qualities.

Positive values of C occur only when the-wing, or portions thereof,

are stalled. Flight situations involving stall or separated flow are

generally avoided, except for demonstration purposes, and are seldom

subjected to conventional dynamic analysis. Such situations usually

lead to spinning motions .which can only be successfully analyzed by

including nonlinear terms and solving the equations of motion by numeri-

cal or analog methods.

In addition to the change in magnitude of the lift forces

acting on each semispan of the wing, it may be seen from

Fig. 4-38 that the lift forces'acting on the downgoing and upgoing

semispans are rotated forward and bacl-ward, respectively. The change

in direction of these forces results in a negative yawing moment about

the Z axis.

Figure 4-38 represents the general case. However, for flight near

the stall, the drag forces may become important and result in' a yawing

moment of opposite sign. The chabge in yawing moment due to p can be

written inmiediately by analogy to the Eq. 4-I 30 result, viz:

S2

Np T Cnp (4-I31)

where Cnp = CnP(pb/2U).

The derivative Cnp is the change in yawing moment coefficient with

varying rolling velocity. While it arises mainly from the wing, as dis-

cussed above, the vertical tail can also contribute (see Fig. 4-38).

The contribution from the vertical tail can be either positive or nega-

tive, depenaing on the vdrtical tail geometry, the sidewash from the

wing, and the equilibrium angle of attack of the airframe.

Cnp is fairly important in lateral dynamics because of its

influence on dutch roll clmping. It is usually negative in sign, and

f
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for most airfrar. cJ iations, the larger its &&tiPve value, the

greater the reduction in dutch roll daping. Also, the more, .ngative

its value, the higher the sideslipping, (uncoordiz~d .) motions accom-

panyibg turn entry or exit. iherefore, positive values of Cnp are to

be desired, although it is complete! .impractical to make this a design

goal.

Effect of r, the change in yawing velocity

F 

Y *
r 

U

jl 2 r

Fig. 4-39. Forces Due to Yaw Rate, r

A side force, F1 , is caused by a yawing velocity, r, which is
mainly due to the fact that the effective angle of attack of

the vertical tail is increased. By analogy with Yp, derived in Eq. 4-129,

it is possible to write

1 y (4-132)

where Cy, = Cy/6(rb/2U).

The derivative Cyr, the change in side force coefficient with yawing

velocity, is of little importance in lateral dynamics; it is comon

practice to neglect this derivative in lateral calculations.

Ss showm in Fig. 4..39, the forward speed of a station which

is a distance 11 from the XZ plane on the semispan of the

wing is decreased an amount l1 r, resulting in a decrease in lift at this

station. Similarly, the forward speed of a station a distance 12 normal

to the XZ plane on the semispan of the wing is increased an amount 12r,
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r resulting in an increase in lift at this section. The result of the

abhnges in lift acting on each semispan is then it rolling moment,

usually positive, whose variation with r can be expressed by analogy

with (Eq. 4-130) as:

1 pUSb 2

where Clr = Cl/6(rb/2U).

The derivative Clr is the change in rolling moment coefficient with

change in yawing velocity. In addition to the major wing.:contribution,

discussed above, the vertical tail will also contribute to Clr if it is
located either above or below the X axis. Its contribution can there-

fore be positive or negative, depending on the vert.cal tail geometry

and the equilibrium angle of attack of the airframe. The sign of Clr is

usually dominated by the wing contribution, which is positive and pro-

portional to the trimmed lift coefficient.

Clr is of secondary importance in lateral dynamics, but it should

not be neglected in lateral dynamic calculations. For a conventional

airframe configuratiQn, changes in Clr of reasonable nmagnitude show

only slight effects on the dutch roll damping characteristics. In the

spiral mode, however, Clr has a considerable effect. For stability in

this mode, it is desirable that the positive value of Clr be as small

as possible.

The side force, F1, in Fig. 4-39 also causes a moment about

the Z axis since thelvertical tail is some distance aft of

the center of gravity. This moment is usually negative and its varia-

tion with r is, by analogy to Lr,

1  i 6.1 N IUSb 2

I WN r T*F - Cnr (4-134)

where Cnr = Cn/8(rb/2U).

The derivative Cnr is the change in yawing moment coefficient with

change of yawing velocity. It is known as the "yaw damping derivative"

and is made up of contributions, all of negative sign, from the wing,
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the fuselage, and, as discucs.d above, the vertical tail. The latter

contribution is by far the largest, usually amounting to about 80 or

90 percent of the total Cnr of the airframe. Like the horizontal

tail contribution to N, it is proportional to the square of the tail

lever arm.

The derivative Cnr is very important in lateral dynamics because it

is the main contributor to the damping of the dutch roll oscillatory

mode and is important to the spiral mode. For each mode, large negative

values of Cnr are desired.

Effeots of Control Surface Defleotions

.The conventional lateral control surfaces are rudder and aileron,

depicted inFigs. 4-4o and 4-41, respectively. The primary rudder func-

tion is the provision of controllable yawing moments; the priiary aileron

function is the generation of rolling moments. Positive rudder deflec-

tion is defined to produce positive side force, as in Fig. 4-4o, and posi-

tive aileron deflection produces positive rolling moment, as in Fig. I-41.

x x

F2

Fig. 4-40. Effect of the Rudder Fig. 4-41. Effect of the Aileron
Deflection, ar Deflection, 8a

In addition to the direct (desired) moments, there are usually indirect

(and undesirable) cross-moments and side forces so that in general

either surface produces side forces and rolling and yawing moments.

The lift, drag, and pitching moment effects of lateral/directionkl

control deflections on longitudinal motion are generally ignored;

however, there are special cases involving large differences b6tween

upgoing and doimgoing ailerons (as e.g., in spoiler-type ailerons)
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where significant changes in lift and pitching moment can occur. Even

such situations do not usually strongly influence the lateral/directional

motions, because the pilot, or autopilot, Oasily counters the effect with

a small elevator deflection. Accordingly, for the general control surface

deflection angle, a, we limit ourselves to the following important lateral/

directional derivatives:

-6 21 L2 whereY -m-- F5 2 Cya hr Cyt) =

if I 2Sb C where = CI
TxF 21x 1

1 J2Sb aCr
N5 = Cn where "Cn -

These quantities are specialized for the particular control surface in

question by the addition of a suitable subscript to 8, i.e., 8r for

rudder, ba for aileron.

Cybr is the change in side force coefficient with variation in

rudder deflection. According to the sign convention adopted here, a

positive rudder deflection gives a positive side force; henc2e the deriva-

tive CYbr is positive in sign. Its effects are relatively .unimportant

in lateral stability and control, except when considering lateral accel-

eration feedbacks to an autopilot.

Cyt is the change. in side force coeffioient with aileron deflection.

For most conventional airframe configurations, the nagnitude of this

derivative is essentially zero. However, for certain aircraft with

highly swept wings of low aspect ratio or with inboard ailerons, the

strong sidewash in the vicinity of the vertical tail caused by the

asymmetrically deflected ailerons can produce finite values of either

sign. Even then; however, the effects on lateral stability and control

are usually negligibly small.

Clbr is the change in rolling moment coefficient with variation in

rudder deflection. Because the rudder is usually located above the

X axis, a positive rudder deflection will create a positive rolling
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moment. Cl8r is therefore usually positive in sign; however, it can be

negative, depending on the particular airframe 'configuration and the

angle of attack at which it is flying. The derivative C1r is usually

of only minor importance in the dynamic lateral control of .conventional

aircraft, and it is sometimes neglected.

Clba is the change in rolling moment coefficient with change in

aileron deflection. It is commonly referred to as the aileron effec-

tiveness. According to the definition given above, left aileron down

or right aileron up is a positive deflection. This produces a right-

wing-doim rolling moment which is positive; Cla is 'therefore positive.

As far as lateral dynamics are concerned, the derivative C16a is most.

important of the control surface derivatives. The aileron effectiveness

in conjunction with the damping in roll (Clp) establishes the maximum

available rate of roll uf an airframe, which is a very important con-

sideration in fighter tactics at high speed. The aileron effectiveness

is also very important in low speed flight during takeoffs and landings

where adequate lateral control is necessary to counteract asymnetric

gusts tending to roll. the aircraft.

Cnar, the change in yawing moment coefficient with variation in

rudder deflection, is commonly referred to as the "rudder effectiveness"

(or rudder power). When the rudder is deflected positively, that is, to

the left, a negative yawing moment is created on the airplane; hence the

derivative Cnr is negative. The design value of Cn5r is usully deter-

mined by considering such requirements as directional control for

asymmetric power and crosswind takeoffs and landings, couniteracting

adverse yaw in rolling maneuvers, and spin recovery control.

Cn8a is the change in yawing moment coefficient with change of

aileron deflection. This derivative arises in part fron, the difference

in drag due to the down-aileron conpared to the drag of the up-aileron.

Where such effects predominate, the sign of Cnba depends minly on the

rigging of the ailerons, their profile drag characteristics, and the

angle of attack of the airfrme. Aileron deflections can also produce

side forces on the vertical tail, vs discussed above in connection with

and these can become import.ant contributors to Cn[a. If negative,
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Cn8a is called "adverse yaw" because it causes the airframe to yaw

initially in a direction opposite to that desired by the pilot when

he deflects the ailerons for a turn. If positive, it produces favorable

or "proverse yaw" in the turning mineuver. Large values of either sign

are undesirable for good latera'l ,control qualities.

The longitudinal and lateral derivatives discussed above are listed

in Tables 4-I through 4-4 for easy referenc6. Appendix A contains

dimensional derivative data for a variety of example vehicles.
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LODNGIlUDDIAL, INOIADItIHIiSIOI'A~l STABILITY DERIVATIVES

(STABILITY AXIS SYSTI)

BASIC llO.Dfl'-2!310!AL STABILIT D.*.RlATiVES

TOTAL AIRFAMEi THBORETICAL NI~~2SOA
- ART IIORI2O*"TAl, STAB3ILITY DERIVATIVE

DE~F11ITIOIIS IJITIT TA IL CONTRIJUTION PARAMETERS

DRAG1
CD qST

U~ TC 1X (-CD-CDU)

2CD 11
CDL~ re x -2L Cm

CD CD 16 -1~
CD8  rad =

CL LIFT1
qS

CI U L 1U '-C-C'

I = LT I-hS,(

C6~ - a rL Cy 1 . q -s- (-Cit-CD)

CL 1 qh Shi Pih Z -1c = -Cc qa I'bq c;7-7

CL4 = 2CL qj, Ski Ili zq

1, 6rad 2CI.hT~ c

CM M

- Cr~ ~Ih 2

\Mrad c 2 yj

rad c qj + (y) Cl-l

rad c -T 1iJ Cz.,.

'The s~o qin addition to its nornm.l use to designate pitching
velocity, is ured in thesc W'~bco to also denote Une dynnnic presmire,

Sit, accori1anco with lonr-eitnblishecl prro'.tliea 11'.. -,e
rparticularitted by thea subsmript 'h'" (or "v") it t vni fie- tho 3ca2s
dyimmic preo-.ure at the horinontal (or vortical) tai3. lliclocal f3ow
angles relative to f'ree strom conditionn are dc-,oted bty ~ x' ~~
and -0 (Fy pilvno).
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TABLE 4-2

IATERAL NONDIMEI'SIONAL STABILITY DERIVATIVES
(STABILITY OR BODY AXIS SYSTEM1S)

BAS IC 14O!WWESSIONAL STABILITY DERIVATIVES NONDIMESO1AL

TOTAL AIRFRAME THEORETICAL AFT VERTICAL STABIL1'I DERIVATIVE

DEFINITIONS UNIT TAIL CONTIBUTION PARKMES

ICY - ch 1uI Yv

ac~3Z Unknown 1

Cyo 2C-~ TCYr

Cyrl q A, F) Yr 1yr

___ qy
9 h T T 1

(L rr. yqv Sb P.

Cy ad CIYqS

uo Fad[cypl] =i -

?Cr I (ib 2

nW v~d bT _ j)2 Cn

1r V1C61"

____ 1V nr~y I ( b 2  CnrCrlr qb) r~ad -TCrvTW
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TABLE 4-3

LONGITUDINAL DIMENSIONAL STABILITY DERIVATIVE
(STABILITY AXIS SYSTEM)

IN TEWS OF BASIC STABILITf DERIVATIVES IN TERMS OF
... ... _ _-NONDDMNS IONAL

QqUANTITY DIME11SI(UAL NONDIMENSIUAL STABILITY DERIVATIVE

DEFINITIONS UNI PARAMETERS

iXX 1 F se-CD-CD) T

X, sec (CL-C,) 7

18a 1_xf pSU2 i-C'

X sec2rad .2 (C

( 6)."
, 7z 2LU (-L- C) +

I aZ 1 _1

see ( C-CD) 7,

6q1 z ft euS.z
q " r see-red 1  -Lq7

Z5I z ft pSU2 (_ U7' sec~raa 2m 0)7

1 I" I4S__1

6M 1 S 1

1Th eet hr nt e N + s Ie

Mq Iy ~ sec -

1 ~M1 cSU2c

Mbx Z ec2rad 21Y CM6 ,

Tethrust-gradient ters are neglected here in the interests of symuetry and-consistency.

%T -m/pUS in the dimensionless tfine first proposed by H. Glauert, A Nondimensional. Form of
the Stability Equations of an Aeroplane, Br ARC R and M 1093, 1927.

For Cl. =0, as in subsonic flight, und CL W/(pU2S/2), as in triimned flight for 70 0,
Zu =-2g/U0 .
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TABLE 4-4

LATERAL DIIMISIONAL STABILITY DERIVATIVE PARAMETERS
(STABILITY OR BODY AXIS SYSTEMS)

IN TER MS OF BASIC STABILIYY DERIVATIVES IN TERMS OF
•NONDMISIOiTAL

DIENSIOIAL STABILITY DERIVATIVE
NTITY NONDIMENSIONAL PARAMETERS@UMIT DEFIITIONIS WI4TPAMEES'

I8C ayy PSU I

I oY 1 Sb b

F U - rad %mj Cyr vrU Jr

I aY 1Sb

I Y I PSU 1

1 *N 1 2sueb_ U u

T"sec 2  2 1z T

1 5N 1 1 n
N r 1 2- se c I Z C %

I1 N 1SUb* 1
Nr s. r ec PZFCnr r

I an, I S I

NsT'3 ec I 1z

1b PSU% b :b
N6  ; 6 sec 2rad 2i C..

1 aL1 L2bU
LPsec2 21;- UjA Ub

I aL 1~ 2 j

see A.Cj

IXi secTT

Xr ;-cIt r

*I aL 1 2 CA_
L.3-see pi-- Cj,

1 6L 1 oSU~b U J
LTx 6see 2rad 21x k 'rb

tThe starred derivatives arise when 0 rather than v Is used as the lateral motion parameter

f (see Chapter 6); in general, Yx*= Y/U o .
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The vehicle dynamic properties, defined in general by the equations

of motion derived in the last chapter, are best specified for use in

control system analysis by a series of transfer functions which relate

output quantities (various airframe motions) to input variables (usually

control motions or external disturbances). These transfer functions are

readily obtained from the linearized Laplace-transformed airframe equations

of motion as sets of ratios between transformed airframe output and input

quantities or initial conditions. The ratios comprise numerators and

denominators expressed as rational polynomials in the Laplace transform

variable, s. The various polynomial coefficients are composed of combi-

nations of stability derivatives and inertial gravitational quantities.

For maximum utility it~is desirable to have the numerator and denominator

polynomials in factored form. Each transfer function is then made up of

a ratio of first- and second-order polynomial products and a gain. The

pains.,poles, and zeros thus obtained define the fundamental properties of

dynamic elements and are essential in most servoanalysis and synthesis

methods and in response calculations. Even though most of the polynomials

involved are of third-order or higher, numerical factorization is no prob-

lem, especially when digital computers are employed. However, unless a

large number of cases are so computed, the specific connections between

vehicle configuration (represented by stability derivatives, etc.) and

transfer and response characteristics (represented by poles and zeros) are

difficult to appreciate. Suceh an appreciation is important in:

9 Developing the insight required for the determination of
airframe/automtic-control combinations which offer
possible improvements in over-all system complexity

Assessing the effects of configuration changes on air-
craft response and on airframe/autopilot/pilot system
characteristics
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0 Showing the detailed effects of particular stability
derivatives (and their estimated accuracies) on the
poles and zeros, and hence on aircraft and airframe/
autopilot/pilot characteristics

9 Obtaining stability derivatives from flight test data

It 'is highly desirable, therefore, to express the locations of the poles

and zeros directly it terms of the literal stability derivatives and

Inertial parameters. This can be accomplished directly by decomposing a

fairly complete 'transfer function form, or indirectly by the use of fewer

airframe degrees of freedom. In either case an approximation 'is required

to arrive at reasonably compact and usable expressions which delineate

dominant, as opposed to trivial, effects. Such effects can vary among

vehicle types, so it is to be expected that literal approximate factors

which apply to all vehicles for all flight conditions will be an exception

rather than the rule.

With this background the immediately succeeding articles inthis
chapter will, first, recapitulate the longitudinal equations of motion
as normally used; present the polynomial forms of the most significant

control-input transfer functions; and develop some appreciation for the
transfer functions and responses with two specific numerical examples.

Based on the physical insights provided by the examples, further-simplified

sets of the equations which apply to the individual modes of motion will

be developed. Following this the complete gust-input transfer functions

in polynomial form are presented and our numerical examples are extended

to cover these transfer functions.

The basic understanding accruing from the above Drocess is further

developed by considering the approximate literal expressions for the

various transfer function factors. These approximate factors are shown

to be related to the simplified equations of motion appropriate for each

mode, and their implications as regards the direct influence of the

4dOminant stability derivativea on the important poles and zeros are

discussed. in the final article a discussion of the modal response ratios

in literal form is presented,

5-2
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5.2 ~IM MUATION AMD MOM3 81ML nCTON~
07 THE IONGITUD FAL ZQUA!Z05 07 NZON

Equations 4-97 are somewhat more complicated than those generally

used for transfer function computations; to simplify them further we make

the following two assumptions:

Assuption0lo. It s aume tat Xq Z ZO. = 0.

Perhaps the best general evidence in justification of Assump-
tion 10 is that the derivatives named in it rarely appear in the tech-
nical literature concerned with aircraft dynamics. The inference here
is that although individual investigators have evaluated the effects
of these derivatives for a multitude of various airframe configura-
tions, they have found them to be of only secondary importance. How-
ever, it must be remembered that if any of these derivatives are of'
actual importance for a particular airframe, this assumption my
produce somewhat erroneous quantitative results for that airframe.

In general, any stability derivative may be neglected if it is
first determined that the term containing the given derivative is
small in comparison with other terms in the same equations. For
the derivatives in question, comparing the term X~sw with XwW
shows that if the frequency range of interest extends as high as
Isl I Xw/X*, X* can no longer be neglected a priori. Similarly,
the upper frequency limit for the valid a priori neglect of Xq is
Is " -]g/XqI. As Zq occurs in the group (Zq+Uo)sw, the appropri-
ate criterion here is IZqI << Uo; and by grouping o terms together
as (s-ks)w the criterion for neglecting Z is 141 << 1.

1 n the steady flight oonditlon, the tlght path ofAesu~tton 11. the airlane s assumed to be horLzontal, 7o a 0.

Assumption 11 is introduced solely to simplify the mechanics
of the analysis. When the flight path of an airplane is initially
inclined to the horizontal, yo must of course be included in the
transfer functions.

On the basis of these assumptions, the longitudinal equations of

motion, referenced to stability axes, become:

(s-Xu)U - XwW + ge = x55-Xuug-Xwwg

-Z u+ (s-Zw)W - U0se = Z88 - ZUug-Wg (5? 1)

-MIu- (Ms+MW)w + s(s-Mq)e = - ug- Mq/Uo)s+MWJwg

where (Eq. 4-96) sO = q

a inertial terms of=and Z equation of 5-1) az = W-UoS9 = uo(7) = (h
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The auxiliary relationships' of Eq. 5-2 are needed to convert the

motion variables of Eq. 5-1 to the quantities sensed by flight instru-

ments such as rate gyros, accelerometers, and altimeters.

As fully discussed in Chapter 2, the transfer functions, for a given

input, are obtained by simply solving the transformed simultaneous equa-

tions of motion for the output variable of interest with all other inputs

considered to be zero. For example, using determinants we can directly

write the attitude-to-control-input transfer function (i.e., neglecting

gust inputs in Eq. 5-1) as:

s -x -xw xB
_ Zu. s - ZW Z5.

e(s) - =("o'" 1 -Ng(5)

8(s) s - Xu -Xw g A(s)

-zu 's - ZV "UoS

-Mud -(mp, + MV) s(s - Mq)

By expanding the determinants, the transfer function can be expressed as

the ratio of a numerator polynomial in s over a denominator polynomial.

The denominator polynomial, A(s), is common to all the transfer functions

and its factors determine the- frequency and damping, or time constants,

of the individual modes of motion. The numerator polynomials depend on

the output quantity of interest. The general polynomial forms of the

primary longitudinal transfer functions are given below, together with

the most usual factored forms of the polynomial expressions.

e(s) NO(s) Aes2 + Bes + Ce
8(s) Aong Along

(5-4.)
Ae(s + 1/TOJ)(s + 1/Te2 )

Along

.5-4
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W(S) _Nb(s) -Aw5
3 + Bs+ CWS + D

8(s) Along Along

((s + 1 /TW1)(S2 + 2twaiwp+ c

Aw or

I( + 1/Tw1)(s + 1/TW2)(B + 04Tw)

Along

u(S) () A.,,s 3 + Bs2+ CuS + Dlu

B(S) Along Along

(B + 1 /Tul)'s + 1 /TU2) (s + 1 /TU3)(56

Aut s or

(s+1/Tu 1)(s 2 + 2 a~s +

Aiong

h(s) vhb(s) Ahs3 + Bhs2 + Chs + Dh

8(s) Along 5Ajlong

(s + 1/Thl)(s + 1/Th2) (s + 1/Th3) (~~

Ah or

I(s + 1 /Thl)(s 2 +2 his + JS

8(s) Along

where Along =As4 + BS3+CS2 + Ds+ E(-)

(s? + 2 tpciB + of~) (s tSCP p

-or or

(s +1 /P1 s + 1 /P2) (s +1 /s~i(s +1 /sP2



The literal expressions for the various A, B, C., etc., coeffic.Lents of

Eqs. 5-4 through 5-9 are given in Table 5-1 in terms of the stability

derivatives. In L'e-v cases m derivatives (v derivatives multiplied by Uo)

are used to achieve conciseness.

AI EAM2 MMAMJ 1UNMIO , B= OD 01, AND
TW O M A COMMTIONAL AIPIANU

To develop an appreciation for the usual responses and transfer

function forms we will study some numerical examples. Accordingly, we

consider first a conventional airplane having the characteristics given

below and the general arrangement shown in Fig. 5-1. Substituting these

Altitude (ft) ........................................ 20,000
Weight (lb) .......................................... 30,500
Mach number ............................ ............. 0.638
True airspeed (ft/sec) ............................... 660

Xu ............................. .. . -o0-0o97Xw ............................. .. 0.0096

XAe ' 0.0

zu .................................. -0.0955
7-v .................................. -1.430

Z~e  .................................. -69.8

.. . ................................. . 0.0

Y4 .................................. -0.0013

Mg. .................................. -1.920
Mbe .................................. -26.1o

data into the Table 5-1 forms and routinely factoring the resulting

polynomials yields the foliowing transfer functions (the denominator,

shown only for 0 is common to all the transfer functions as indicated):

8(s) 0.09 4.T1 -+7 + 1

-8e (0) [ 2 + 2(0-0714)2 j js 2  +2(0.493)s+1
(0.060)2 3 0.o63o + (4.27) 4.27

5-(-o)
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+1) 1
M(S) -1 w 100.068)2 * ' .O:

= 00 5e 5 660'( -1

+ 1.]'

-15920 (-12)S170 1) +

a (S) 20)81 .00 1. 1 (5-13)

Inspection of the roots of the denominator which, set to zero, is the

characteristic equation (commonly called the "longitudinal stability quar-

tic") shows that the free longitudinal motions consist of two oscillatory

modes. One of these is a relatively well damped high frequency oscillation

called the "short period," and the other is a lightly damped relatively low

frequency oscillation called the "phugoid." The subscript notation

employed in Eq. 5-9 reflects this nomenclature.

Figure 5-2 contains jo-Bode plots of the above transfer functions,

including amplitude ratio and phase asymptotes. Among other things, the

Bode diagrams are graphical representations of transforms of the weighting

functions. In this view, they amount to response transforms for unit

impulse inputs and can be used to draw conclusions caocerning the appear-

ance of the phugoid and short-period modes in the transient response of

the airplane. For example, Part (c) of Fig. 5-2 shows that the amplitude

ratio, lu/bel, is much smaller at the natural frequency of the short period

than at that of the phugoid. This indicates that much smaller airspeed

changes occur in the short-period transient mode than in the phugoid

transient oscillation. Part (b) shows that the quadratic in the numerator

of the C/be transfer function very nearly cancels tie denominator quadratic

corresponding to the phugoid oscillation. Consequently, we expect almost
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A

-no change in angle of attack during the phugoid oscillation. A compari-

.,' son between the Part (a) and Part (c) plots shows that the values of" the

amplitude ratio, Ie8e I, at the. short-period and phugoid frequencies are

more nearly the same magnitude than those of l U/bel at the same frequen-

ciao. This implies that, for the same inputs, the amplitudes of e
occurring in the characteristic modes are more similar than those of u.

Finally, the Part (d) plot shows that the verticaj, acceleration ampli-

tudes at phugoid are only somewhat higher than those at short period.

However, considering the large differences in frequency, a given oscilla-

tory:vevrtical acceleration will involve much higher excursions in h and 6
at phu 1c i than at short-period frequency. This can also be visualized

on tho Par t (d)l plot by considering that. successive integrations of ar to

obtain_. ard h involve successive clockwise rotations of the laz/be Bode,
Keach df 20 db/decade. Such rotations progressively suppress the short-

period 4Lump relative to the phugoid peak.

In summary, it appears from our study of Fig. 5-2 that only relatively

usmll amplitudes of u and h occur in the short-period mode and of m in the

phugoid mode, whereas large amplitudes of e can occur in both.

The response time history of the example airplane to an elevator pulse

(the weighting functions themselves rather than their transforms), supports

these conclusions. These are given in Fig. 5-3 using two time scales; that

of Fig. 5-3a emphasizes short period, while that of Fig. 5-3b shows the

phugoid best. Here we see that the maximum amplitudes of u and h are very

much smaller in the 'short period than in the phugoid, and that the maximum

amplitude of w (I Uoq) during the phugoid is very nearly zero. Further,

the mximum amplitudes of 0 in each mode are comparable in magnitude. All

these facts are in agreement With what we inferred from the Bode plots.

Another way of studying the relative motions is to draw the time

vectors and force and moment polygons (Chapter 2) as we have done in

Fig. 5-4. Note the relative magnitudes and phases of the component motions

for each mode as shown by the time vectors, and compare these wit the

pappropriate time responses. The fore and aft perturbation from the undis-

turbed flight path (judt) is negligible for the short-period mode', but for

the phugoid it is of the same order as the height perturbation. The time

5-10
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vector polygons indicate the relative importance of each term in the

equation of motion for each mode; e.g., compare the s2 8 inertial pitch

acceleration time vector for the phugoid and short-period modes.

7.7 W-M=-o-MWM a -SMZ APM AWZO

Using the foregoing observations of the detailed nature of the

responses we can construct a simplified set of equations applicable specifi-

cally to short-period motions. This approximation involves setting the

variation in forward velocity, u, equal to zero and deleting the first

relation of Eq. 5-1. This reflects the previous statements that u is of

rela.tively small amplitude in the short-period mode, and that the two

degrees of freedom, a (i.e., w) and e, are dominant; accordingly, with
ug =0,

'(s- ZW)w- U0se = zb- ZvWg

-(O + M)w + (s - M)se = M88 - M- q/Uo)s + ]wg

Solving this system of equations with wg = 0 leads to the transfer func-

tions

1 s + WAM )(5-15)

UO [s,2 _ (UA4 + Zw+ Mq) s + (MqZv_ Uo~w)]

s 8) (Mb + ZBM 8 + (%N- M8 ZW) (-6
[S2- (UO +Z Mq)s + (MZw-UOM)]-

The quadratic term in the denominator is of the form s2 + 2 tsp~spS + p,

with

%~p = fMqZ; Wh

=tp - -(Zw + Mq +I.M&) (-

Evaluating Eqs. 5-15 and 5-16 for the example numerical values of

the stability derivatives yields

5-14



=1.145 (5- 18)
+ +[ s2 +2(o.493)s 1

and
S S

-+1
8() 9.5 

(5-19)

These results are compared with those (Eqs. 5-10 and 5-I1) obtained from

the complete equations of motion in Fig. 5-5. We see that for frequen-

cies above the phugoid the two-degree-of-freedom short-period transfer

functions are very good approximations in both amplitude and phase. Fur-

thermore, the two- and three-degree-of-freedom time responses in w and 6

are in excellent agreement for times shorter than about 10 sec.

In summary, the two-degree of freedom solution of the pitching moment

and vertical force equations of motion is a suitable approximation to the

short-period mode. For typical flight conditions, the short-period mode

can be considered to consist of changes only in angle of attack and in

angle of pitch, and the short-period motion occurs before there is any

appreciable change in forward speed. We shall later examine the limiting
conditions for which this "typical" behavior is still reasonably accurate.

.6 R-MGM-07F-ZMDM MUOM APPROX.IMTIONs

Characteristically, the phugoid components of vehicle motions are

very slow compared to the short-period components. In an approximate

sense the phugoid mode describes the long-term translatory motions of the

vehicle center of mass, whereas the short-period describes rotations about

the center of mass. For practical purposes in the phugoid motion, the

"dynamic" pitching, inertial, and damping moments are small compared to the
"static" pitching moment changes with speed and angle of attack. Classi-

cally, with Mu =0, the phugoid motion we.s conceived to involve fairly
large oscillatory changes in forward speed, pitch attitude, and altitude,

with approximately constant angle of attack; the static stability, Ma,

5-15
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being sufficiently large to decouple phugoid and short-period and to

mintain m perturbations small. This is, of course, the case in the

numerical example, where the w time vector is very small indeed (Fig. 5-4b).

On modern craft Mu is seldom zero, and the total static stability

terms become Muu+ A w. When only these static moments are retained in

the pitching moment equation, the three-degree-of-freedom phugoid eqa-

tions of motion become

(s - XU)u- Xww + ge = X5- XuUg- XwWg

-Zuu + (s - Zw)w - Uose = Z65 - ZUg - ZwWg (.5-20)

-*UU - %Mw 0 = 8 -Mug- MWWg

With Ug = Wg = 0, these lead to the transfer functions

. s2 + [MuX5 + z5- (Xu +ZW)M8]s

_ s + [(ZuMv- 7wMU)X8 + (MuXw-MwXu)Z8 + (ZwXu-XwZ)M1 -2)

_ [(x,-g)M8-Mxs]s + g(,',,Z -z5Mwlr - (5-22)

UoS 2 + (UoM4UX 8-UoXuM 8 )s + g(ZBMu-M6Zu) (-2)

where 6 = S2 + 2tpas +ci

2 tp , = - + M .( g ) (Z -25 
-2 4

Substituting the example numerical values, the resulting three-

degree-of-freedom phugoid approximate transfer finctions are

5-17
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o+

.U-9Z- + II3 63 + *

= ~ 4085 -J\.~5 1(5-25)-8 (s) + 2(0.0710)s 1
(0.06030683'

U(S) -15920 (5-26)

S+2 2(0-0710)s

M s -I w(S 1110 (0.0683) 2 +  0.0683 + (2

These transfer functions and the response to a pulse elevator input are

compared with the complete three-degree-of-freedom results in Fig. 5-6.

The correspondence is vcry good for frequencies below about 1 rad/sec,

roughly one-quarter of %p.

Because the example Mt, is zero, we return to Eqs. 5-24 to obtain an

appreciation for the general importance of Mu. We note that for the

normally positive values of Zw/Mv and (Xc-g)/M, the phugoid frequency

and damping increase proportional to Mu. Conversely, for sufficiently

negative values of Mul, becomes negative and the phugoid mode is then

characterized by two first orders, one convergent, the other a divergent

"tuck," so called because as speed increases the airplane's iose has 'a

tendency to "tuck under" (negative Mu).

When Mu = 0, -the approximate factors for the classical case result.

These are

2(tco)p = -X. (5-28)

-1 (5-29)

5-18



The undamped natural frequency result can be further sinplifieli by con-

sidering Cju 0, as is generally true for subsonic flight, and taking

the trimmed lift equal to the weight so that A, I -2g/U O. Then,

~ V2 S.~(5-30)

The period of this classical phugoid is (Ntt/g)Uo, or about a fifth of

the true airspeed in miles per hour. Based partly on these results,

so-called two-degree-of-freedom phugoid approximate equations have been

used from time to time. These are

(s-Xu)u + ge = 0 (5-31)

-ZuU - Urose = Zr8 (5-32)

The characteristic equation of this set is

- XuS - - (5-33)

and the -damping and undamped natural frequency are thereby the same as

those given above (Eqs. 5-28, 5-29) for the classical (Mu = 0) case.

Examination of the X and Z vector polygons in Fig. 5-4 indicates that the

two-degree-of-freedom set is reasonably good for this example. Unfor-

tunately, however, some of the transfer functions (and thus some time

responses) derived from these equations are very poor approximations to

the complete three-degree-of-freedom situation in the region of phugoid

frequencies, and thus the two-degree-of-freedom set is oversimplified for

most practical purposes.

p.7. HOVERING EqUATIONS OF MOTION, CONTROL-INPUT
TRANS=R FUNCTIONS, AND MODAL RESPONSES

The preceding example has illustrated the phugoid and short-period

modes which characterize the longitudinal motion of "conventional" air-

craft, that is, aircraft supported principally by fixed wings, flying

at the relatively high speeds demanded by this form of sustentation.

For vehicles such as helicopters and VTOLs operating at zero and very

5-19
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low forward speeds, the longitudinal motions display modes very different

from the phugoid and short-period. These differences arise because many

of the usual derivatives disappear at hovering. It is pertinent, there-.

fore, to delete such terms from the equations before considering a numerical

example in detail.

For hovering vehicles the derivatives Mw, M , and X. are usually

negligible due to considerations of symmetry. This can easily be seen

for certain very simple VTOL aircraft, e.g., a "stand-on" ducted-fan.*

With such vehicles perturbations in w can only produce Z forces because

the configurations are symmetrical about the Z axis. For more complex

VTOLs, such as the tilt-duct shown in Fig. 5-7, Mw arises principally

through flat-plate drag on the horizontal tail and fuselage for the usual

c.g. location near the duct axis, which is vertical in hover. The Mw

resulting from these contributions is exceedingly small and may safely be

neglected in calculating the frequencies, dampings, and time constants of

of the longitudiral modes. The contribution of the horizontal tail flat-

plate drag to the M and Xw derivatives is totally negligible for this

configuration; in fact, for any reasonable hover arrangement, nonzero Xw

and/or Mw are very unlikely.

Significant M. effects can occur in hover in the following cases:

1. When the tail jet (or rotor) is of high disk loading'and con-
tributes significant lift in the unperturbed trimmed condition.

The thrust of a high-disk-loading tail jet (or rotor) is virtually
unaffected by w perturbations and gives a negligible contribution to Zw
(and hence Mw). However, the main rotors now have a moment arm about
the c.g. and thus induce some Mw .

2. When the tail disk loading (measured in the perturbed condi-
tion) is appreciably lower than the main disk loading. In

this case the tail thrust is sensitive to perturbations in w and it may
give a significant contribution to Zw which induces some Mw due to the
long moment arm about the c.g.

Even in these cases nonzero Mw usually does not change the character

of the typical hovering modes. Their description can therefore proceed

on the assumption that, for Uo = 0, M , Mw, and Xw are negligible.

*J. P. Campbell, Vertical Takeoff and Landing Aircraft, Macmillan Co.,

New York, 1962.

5-21



C-Ii

CD-

C4D

0 N 0

5-22.



Deleting these and gust-input terms from the equations of motion (Eq. 5-2)

gives --

(s-XU)u + ge -XO

- u + (s-Z,)w Z Z88. (5-.)
+ (s 2 M-s)e =

The corresponding control-input transfer functions in polynomial form are

obtainable directly from Table 5-1 with Me,, M, and Xw terms deleted.

Many of the numerator and denominator factors are directly separable,

and canceling, because of the zero terms appearing in the left side of

Eq. 5- F- For example, for X 0 " 0, a conmon occurrence, the w, 0, and u

transfer functions are most directly obtained by expanding the determi-

nant forms (Eq. 5-3) as follows:

s-u 0

w(s)- s2-u MBs z 8 A.5r*

5(s) - Xu og(s- Zw)

-Zu~ s-ZW 0

S-Xu 0 0

-Z1  s-zw o

8(s) 0 M8( s Xu)? ) (5-36)

(s) (s- Zw) hover . Ahover

*Assuming that IZuM8 << IjMZ5j as usually appropriate to "throttle"

(vertical thrust) control.
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0 0 g

ZB s-Z 0

(S-Y) %hover IVhover

where Ahover = (S-Xu)(S2 _Mqs ) + gMu (5-38)

From these relationships we see that the s-Z w mode is associated

only with w perturbations and does not appear in either 0 or u motions.

Since modal response ratios are independent of the input assumed

(Chapter 2), this is a general conclusion which holds as well for X O.

Furthermore, since for Uo=0, 6 =-w (Eq. 5-2), the mode is characterized

by pure vertical transatory motions in altitude (heaving motions) with

an aperiodic time constant of -1/Zw, invariably positive. Conversely,

the modes associated with the longitudinal hovering cubic,

" shover = s3- (Xu+Mq)s2 + XuMqS +glM (5-39)

do not usually* involve w or h motions irrespective of whether there are

three real or one real and two complex roots. That is, the longitudinal

hovering cubic describes motions normally consisting of u and e pertur-
bations only. The relative u and e motions can be most simply obtained
from the X equation of Eq. 5-34 as a modal response ratio:

-- L -
U XS =-Rhover

where -qhover represents the roots of the hovering cubic. For real roots,

and resulting aperiodic motions, the ratio is real; for complex roots, and

*The absence of h motions depends on Zu being negligibly small, which

is generally true in hover; however, the tilt-wing configuration exinined
in STI TR-128-1 (see footnote, p. 5-25, for complete reference) had Zu
almost equal to Zw .
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resulting oscillatory motions, the ratio is complex and must be character-

41 ized by an amplitude and phase.

.8 no= AI N 'O, ZB, 30 IOS,
AND, M PO= 7M 0 A EVDZN VZMOZM

To illustrate the foregoing in more concrete terms, we now consider

the example VTOL airplane of Fig. 5-7 which has the following character-

istics under hovering conditions:*

Weight(lb) ................. ...... ....... 3,100
Pthinri(sug-ft2) ... .. . .. .. ... .. . ... .. .. ... 1.,790

Groundspeed, Uo (ft/sec).............................. 0

Xu ... .... .. .....0. .0 . -0o157Xw .................................... o.0
Xw ....................... ......... 0.0

Zu ................ ........... . ..... 0.0
Zw ..................... ....... -0.137
zq ..... .... ................... 0.0

Z e . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 1 . 0 8
S............................... 0.0136

M4 .............. 6..................... o.0

M4e ................................... --1. 0

The resulting control-input transfer functions are

w = 1.08 (5-41)
"e e 2'_(s + 0.1 37)

= (s+o137) (5-42)
We '-e  Abover

u -32.2 (5-43)
:-e Ahover

where

bnover = ( T Is 2  + 2 tpO)s

= (s + 0.824)[s2 - 2(0.439)(0.731)s + (0.731)2] (5 -- 4)

*J. Wolkovitch and R. P. Walton, VTOL and Helicopter Approximate Trans-

fer Functions and Closed-Loop Handling Qualities, Systems Technology, Inc.,
Tech. Rept. 128-I, Sept. 1963.
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Figure 5-8 contains the corresponding Bode diagrams and time responses

" to an impulsive elevator input. The Bodes are much simpler than those

given for the conventional airplane in Fig. 5-2. The leading phase shown

for e and u results from the negative damping of the hovering phugoid mode.*

The time responses show the divergent oscillatory character of the

u and 9 motions and the first-order convergence of the w motions. The

relative amplitudes of u and e are clearly shown on the time vector

diagrams of Fig. 5-9. Additionally, the time vectors for the phugoid mode,

Fig. 5-9b, show that the instability is aggravated by a very small IMqI

and a relatively large Mu. Such unstable oscillations are quite typical

for hovering vehicles out of ground effect. The separate influences of

these two derivatives can most easily be traced using the approximate"

literal transfer function factors considered subsequently.

5.9 GUST-flPU TMANSMM MOTIONS

The gust-input transfer functions are obtained from the equations

of motion (Eq. 5-1) using the same procedures as for control inputs.

Because the denominator remains the same regardless of the type of input,

we need consider only gust-input numerators. These are given in poly-

nomial form in Table 5-2, which follows the format established in

Table 5-1. In addition, Table 5-3 contains the gust transfer function

numerators for the truncated short-period and phugoid equations of motion,

Eqs. 5-14 and 5-20, respectively; the corresponding denominators are those

given in Eqs. 5-16 and 5-23.

Figure 5-10 presents Bode plots of the u-gust transfer functions for

the example conventional airplane. We see here that the primary response

occurs at the phugoid frequency. Taking peak amplitudes as being approxi-

mately proportional to the magnitudes of the phugoid modal response

coefficients in the several degrees of freedom, the magnitudes of the

relative motions in decibels are given by

*For such nonminimum phase situations it must be remembered that the

stability criterion for the closed-loop system is no longer simply that
the open-loop amplitude ratio be less than one for phase lags greater
than 1800 (see Chapter 7 for example closures under such circumstances).
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u:a.:w: e = 118 :-5:-23:-371dbI/i

Converting az to A (i.e., Iaz(ju_)/pjl "h(imq)I) to correspond with the

u and w velocities, e to degrees as a more familiar measure, and, finally,

considering linear amplitudes rather than db,

u:h:w:e = (8:8.8: 0.071)fps: 0.80

These relative magnitudes "are completely consistent with our already

established picture of the phugoid motions. That is, they show that the

phugoid responses to a u gust are predominantly in h and u, secondarily

in e, and hardly at all in w. Note, however, that the u and e responses

drop off sharply with increasing frequency, whereas the w and az responses

do not. Thus, in the short-period frequency region u and e are essentially

nonexistent, while w and az are about the same as in the phugoid region.

Furthermore, the az response for frequencies beyond short-period remains

constant, so that there is a distinct possibility of u gust excitation of

lightly damped structural modes which may actually exist in this region,

but which are eliminated by the rigid-body assumption. Finally, notice

that the short period is almost exactly canceled by a corresponding numera-

tor term in both the u and az transfer functions, indicating that the

short-period mode itself will scarcely be present in u and az responses

to u gusts.

The w gust transfer functions given in Fig. 5-11 show that low

frequency responses progressively decrease in importance relative to high

frequency iesponses as we consider, in turn, the u, e, w, and az outputs.

The u response is somewhat lower at phugoid and higher at short period

than the corresponding u response to Ug (Fig. 5-10). Otherwise both plots

are similar, the inference being that, regardless of input, u perturbations

are always small except near phugoid frequency. The 6 response at phugoid

is about the same, but that at short period is considerably higher than

the similar responses obtained fOr a ug input. In this connection the

similarity in form of the w/ug (Fig. 5-10) and e/wg transfer functions

should be noted, i.e., w responses to Ug are almost identical, except for

a scale factor, to 0 responses to wg. This similarity also extends, but

5-32
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not quite so markedly., to the w/wg transfer function where, due to the

near cancellation of the phugoid, the response is almost completely flat

out to short period. The az response occurs predcminantly at short period

and beyond. Again the possibility of exciting structural az responses in

this region must be considered for an elastic airplane.

.0 'COUPL3lG N1AMTOM

Multiloop situations in which more than a single input to the vehicle

is involved require consideration of vehicle-introduced coupling effects

between loops. Such consideration is based on the use of coupling numera-

tors. These are defined in Chapter 3, where the notation established is a

direct indication of the operations required to compute the coupling0 u
numerator. For example, the coupling numerator, NbeBT, appropriate for

simultaneous e--e and u-,-ST feedbacks is computed by substituting the

5e and 5T input coefficients for the terms normally appearing in the e

and u columns of the characteristic determinant. That is, from Eq. 5-1,

XT Xw Xe

SZT (s - ZW) ZSe

M8 -Nos + MW) Mbe

There can also be coupling effect3 between gust inputs and control

inputs, and among more than two inputs, control, or disturbance (Chapter 3),

so the possible variations are quite numerous. However, the coupling

numerators are always easily computed and factored because replacement of

at least two columns which are generally functions of s by two columns

which are generally constants reduces the s polynomial to second-order or

lower. Accordingly, it is unnecessary to catalogue all possible input

combinations. Consequently only the more commonly used two-input control-

coupling numerators are given in Table 5-4.

Table 5-4 contains the polynomial coefficients in literal form, the,

corresponding factored form, and literal approximations to the factors.,

Since the polynomials are either first- or second-order in s, factoring

even in literal form is no problem and exact literal factors can easily

14-I
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be written. However, the approximate factors shown are considerably more

compact than exact literal factors because usually unimportant terms have

been eliminated. The assumptions involved in obtaining the approximate

factors are readily apparent, almost by inspection, and are not explicitly

listed. They are however usually valid for conventional elevator and

throttle controls (i.e., IXsel << IX5TI; IM&I <<IMbel) For unconventional
controls, e.g., cyclic and collective pitch on a helicopter, the approxi-

mate factors shown may be inappropriate and, in such cases, the specifically

important contributions to the exact polynomial coefficients should be used.

S.11 APP1XIMATE YACTORB

The literal approximate factors given in Table 5-4 for coupling

numerators serve to reintroduce the subject of approximate factors in

general. In addition to those given in Table 5-4 we have already

implicitly derived some approximate factors in connection with the simpli-

fied short-period, phugoid, and hover equations of motion (i.e., Eqs. 5-17,

5-24, 5-35, 5-36). However, ,using such truncated equations does not always

produce unambiguous and reasonably accurate approximate factors or adequately

idehtify the conditions for which the approximations hold. A more direct

attack, which meets these requirements, is simply to factor the literal

polynomial expressions in Table 5-1 by first neglecting terms of minor

significance, and then applying an approximate factorization technique

such as that described in Section 3.4. Of course the relative importance

of various derivatives or derivative groupings depends on the vehicle type

and flight condition, so that there is no single set of literal approximate,

factors generally applicable to all situations. This is reflected in the

profusion of approximate factors* given in Tables 5-5 and 5-8.

*Taken from:

.I. L. Ashkenas'and D. T. McRuer, Approximate Airframe Transfer Func-
tions and Application to Single Sensor Control Systems, WADC-TR-58-82,
June 1958.

J. Wolkovitch and R. P. Walton, VTOL and Helicopter Approximate
Transfer Functions and Uiosed-Loop Handling Qualities, Systems Technology,
Inc., Tech. Rept. 128-1, Sept. 1963.

R. L. Stapleford, J. Wolkovitch, R. E. Magdaleno, C. P. Shortwell,
and W. A. Johnson, An Analytical Study of V/STOL Handling Qualities in
Hover and Transition, AFFDL-TR-65-73, May 1965.
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Table 5-5 presents the approximate factors for conventional airplanes,
f and these apply as well to VTOL machines and helicopters at cruise or high

speed flight. Notice in particular that the approximate short-period

frequency and damping are identical to those of Eqs. 5-17, and the phugoid

frequency and damping are quite similar to those of Eq. 5 -24 except for the

appearance of the ZwMq term in the Table 5-5 expressions. Similarly, the

numerator factors implicit in Eqs. 5-15, 5-16, and 5-21 to -23 have their

counterpart in Table 5-5. For exaple, the numerator time constants in

Eqs. 5-15 and 5-16 reduce to the same expressions as those for 1/TwI and

1/T92 in Table 5-5 when the Table 5-5 conditions of validity are invoked.

The various expressions in Table 5-5 tell us, almost at a glance,

what derivatives are important for a given control situation. Furthermore,

they also display the explicit connections between all the numerators and

the denominators via the dominant derivatives. For example, changes in

1/Te 2 which involve changes in Zw are also accompanied by important

changes in spp 1/TU, and % (or 1/Th2Th3).

The approximate factors can be simple and effective guides to the

influences of speed, c.g., and configuration changes on the basic trans-

fer functions and on the flight control system accommodations required

for such changes. They are especially upzful for the preliminary selec-

tion of appropriate flight control system feedbacks. For example, a very

crude, albeit relatively accurate, way of considering the basic effects

of a stability-augmenting flight control system is to regard its action

primarily as one of directly augmenting various aerodynamic derivatives.

From this point of view a pitch rate damper (q-0-5e) simply augments the

derivatives Mq and Zq (for Xbe negligible). Accordingly, the primary

effect, related to the increased -Mq, Js to improve the short-period

damping. Table 5-6 delineates the important derivatives and the quali-

tative consequences of their augmentation for conventional aircraft.

The conditions for which the Table 5-5 approximate factors are valid

do not extend to those appropriate for VTOL aircraft and helicopters in

hovering and transition flight. Such situations are treated in Table 5-8

which, because of the different vehicle types considered, contains a

variety of possibly applicable expressions. Table 5-7 .serves as a guide
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to Table 5-8 and contains additional information concerning the very simple

transfer function forms appropriate for hover. Although the unconventional

aircraft covered are all VTOL or helicopter types, we continue to call the

primary control inputs "elevator" and "throttle." However, as noted in

Table 5-7, "elevator" now means whatever device is used to produce a pitch-

ing moment (e.g., longitudinal cyclic pitch on a single-rotor helicopter)

and "throttle" now means a thrust input regardless of direction (e.g.,.

collective pitch on a helicopter which produces a vertical thrust).

The connections, established and apparent in Table 5-8, between the

dominant derivatives and the resulting transfer function poles and zeros

serve the general purpose, again, of delineating potentially important

feedbacks and furnishing direct insight into the basic vehicle dynamics

and the effects of changes in configuration, speed, etc. In this regard

notice particularly the expression for the tilt-duct hovering oscillation

given in Table 5-8a, and recall that the corresponding example time vectors

(Fig. 5-9a) indicated strong Mq and Mu influences on the damping. We can

examine such influences in detail by directly considering the approximate

factor 3.2 pp - - (Xu + Mq) (5-6)

First we note that substituting the example values into Eq. 5-46

gives

2~a~ -j3.2(0.0156) + 4(.157 + 0.04f5)

" -0.759 + 0.121 1 -o.638

in good agreement with the exact value (Eq. 5-44) of -0.642. With our

confidence in the approximate expression thus established, we can now

fix the relative effects of the dominant derivatives on the total damping.

Applying Eq. 5-46, we see that for the example values the order of dominance

is Mu, Xu, Mq; and that a 100 percent increase in -Mq can be counteracted

by about a 12 percent decrease in Mu. For large changes in Mq Eq. 5-46may

not be appropriate because it requires as a condition of validity that

IgMul >IM31. For example, if -Mq is increased to 1.0 then IgMul <IM31 andq *iu qI n
the appropriate approximation (Table 5-8a) is

Mq 2~ gMu 57-twpI -Xu - - M (547
16 2q
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7.12 APP OXMATE MODAL RESPONSE PATIOS

The ways in which the various degrees of freedom enter into the

total motion corresponding to a given dynamic mode can most simply be

studied by considering the modal response ratios. We have already used

these in the time vector diagrams for the specific examples of this

chapter, but now we generalize to obtain the more interesting approximate,

literal relationships for conventional airplanes. As noted in Chapter 2,

the modal response ratios can be expressed using any one of the n cofactor

sets (for'n degrees of freedom) of the characteristic determinant, i.e.,

denoting two of the n degrees of freedom as mi, aj:

) (-i)- (is)') (5-48)

where k = I, 2, .. , n

Short Period. Applying Eq. 5-48 to the short-period modal responses

we first compute the ratio u/w from the selected cofactors of the Eq. 5-3

denominator:

Vu)sp Z;2s =-0,

s, - zw  -uos

-(Ns + M) s(s - Mq)

=- s =-qspVI) --u -Uos

-- s(s.-Mq)
s Z s s - Mu B = -qsp (5-49)

6s2- s (ZW +Mq + MA)- McG+MqZ )

s - spasp + Jp s
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For the approximate short-period frequency and damping given by (Eqs. 5-17)

2 ~a 5p - 6 + MqZw

2 tspasp A -(Zw + Mq + M)

it is obvious that the numerator of Eq. 5-49 is identically zero; i.e.,

(V) = 0 (5-50)

This is the classical statement of the conditions of validity for the

short-period approximation. It is, in fact, taken as the starting point,

based on flight test observations, for the development of the approximate

two-degree-of-freedom short-period equations given previously (Eqs. 5-14).

From the characteristic, determinant of the short-period equations

we can now conveniently comnpute the ratio e/w from either of the expres-

sions:

W Ps = -qsp s=-s

Using the first, and converting to angle of attack, m a w/Uo

( s) ( s - p  -()SP Z + JiSp s I

W ., (s )s =-(p --t)-(tw SP j~p sp

The mignitude of the modal response ratio, which is the square root of

the.squared sums of the real and imaginary parts, can be simplified by

substituting the approximate expressions for cp and 2(a)sp (Eqs. 5-17)
to yield

Zw(-M& - Mq)] /  _ [- /2

I~1 "c~+ ~wJ +(5-52)
ISP M + qw+bz

The phase angle of the modal response ratio can be written as the differ-

ence between the numerator lead and the denominator lag contributions; and
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these can be combined via the identity

-1 -1 (X1
tan- x ± tan- y  tan 1

to give

esp p
St+

For the usual sp < < Csp/zw this further reduces to

Ci38
sp Cosp p

In terms of the flight path angle, y' e-a., Eq. 5-51 can be expanded

to.

( ) I (-7- -4, (555sp =-sP -tspa- sp + Jusp - sp

whereby

- sp cusp

_ = -tan -I  sP P tansp! _ p (5-56)
sp -tspwsp n  sp

flotice that for small tsp, Eq. 5-55 becomes

-Zwcsp "J4spYsp = sp

-Zas p  - Uodsp = hsp

This is simply the Z equation (5I) with u perturbations neglected.

Accordingly, typical short-period motions for -1 reasonably large
involve I el approximately equal to but somewhat smller than IMI ; e lag-
ging m (because Zer is invariably negative) by an angle whose tangent Is
given by -Zw N/ - s~p t7co 2rpri opr of the sami quantity

and 7 lagging a by somewhat more than 900 (tie 7 vector lies in

the third quadrant).
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PhUgoid. From the complete denominator of Eq. 5-3 th, phugoid

modal response ratio, (u/W)p, is most simply evaluated in literal terms

using the expression

-Xw 9

(V - -= -s=-qp

s (x--g) + g zw
XuS -q A -u

° s  09- xus -qp

For s =-( + 5-58)-2 )

(Y--gkpO'P+ jc j-_t72 + z

Uo[2wop - 2jp-f - p - Xu-p-p+ jap t) L

where (Table 5-5) (5-59)

* g( Zu - Muz) ; 2 -

Mq p - Mq(wz- g)

Substituting these relationships into Eq. 5-59,

(Xc - g)(-kpap + iap AY-_p) + g2;. s-o
(W)v - jUiO(X g) +C g~zu

Considering that the Zqj terms generally dominate both numerator axd

denominator,

I(u) -UoMw + MqZw (*-g )

|p UoNu - MqZu

However, assuming JMqZul << UoMuj and IM.7 I e< 'Uo¥ji produce the sam:

result for either Eq. 5-60 or 5-61, namely,
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* P -- or (Mtu + MKw)p = 0 (5-62)

The last equation corresponds to that assumed for the three-degree-

of-freedom phugoid equations of motion (Eqs. 5-20), i.e., a balance of

only the static moments. Accordingly, we can now specify more precisely,

via Eq. 5-60, the conditions under which these equations are valid. For

Mu=0, Eq. 5-62 shows the classical result, w= 0; i.e., constant angle

of attack, cm, for the phugoid. The w =0 result is, in fact, given

exactly by Eq. 5-58 when the classical results for the phugoid undamped

natural frequency and damping (Eqs. 5-28, 5-29) are inserted.

Proceeding to another modal response ratio, using now the generally

valid three-degree-of-freedom phugoid equations of motion (Eq. 5-20) we

compute

S-Xu -Xw

-Mu - s

P s =-qp - Xw gp-

- - XUg+ X]
I '

For the approxiate factors of Eq. 5-24,

XwMu u-Xu +- - -- 2tpa) +-

and

p g 9-4
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The absolute magnitude, using the Eq. 5-24 approximations, is given by

' 2  MW Uo
p= ,+ ) (-65)

Generally, Zw will be the domina.-. term of those in the parentheses and

for such circumstances

U p g2  g2

(5-66)
[ : or Igelp lAIp

The phase angle from Eq. 5-64 is

Lu) = gMuta_1 6p)

and for the usual small values of tp and gMu/, M it approaches 900 .

Because there is also roughly a 900 rotation between u.and A, e is near-ly

aligned with -u, and in view of this and Eq. 5-66,

(A + go)p 1 0 (5-68)

This result is clearly evident from Eq. 5-63 by considering the s term

to dominate the numerator.

For Mu = 0 we can multiply Eq. 5-68 by U and substitute A for ue

(since w 0), whereby

UA + 9A 1 0 (5-69)

U2Now, integrating, - + gh I const

which shows us that, very roughly, the sum of kinetic plus potential
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t " energies remains constant during the phugoid motion. This is again a

"classical" result, first given by tanchester. Another interesting

result follows from Eq. 5-69 if we recognize (Eq. 5-30) that -- a-

and that hp ja1php; then

or U2

i+ jV-W 2 o0

Integrating twice and neglecting the first constant of integration (it

leads to a time variation inappropriate to the assumed trim conditions),

h + JV x " const

or, considering absolute values,

h2 + 2x2  " const (5-70)

Equation 5-70 shows that, as seen by an observer flying in steady forma-

tion with the airplane, the phugoid motions have an elliptical pattern

with an amplitude in h about 1 .4 times that in x. Furthermore, for

positive climb rate, A, A is negative (Eq. 5-69) and x, 1800 out of phase

with A, is positive; the motion around the ellipse is therefore counter-

clockwise, with h and x being in phase. Finally, for positive h and

negative A., as above, e is positive (Eq. 5-68), therefore in phase with

and x, and also aligned with the path (since w-0). The complete

picture sketched below (Fig. 5-12) is consisttnt with the time vectors

shown in Fig. 5-"4b.
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CHAJTBR 6

1ATAL DYNAMICS

6.1 IN OTDUCTION

The treatment of the vehicle's lateral dynamic properties given in

this chapter closely follows the form and content of the preceding chapter

on longitudinal dynamics. The first of the succeeding articles in this

chapter recapitulates the lateral equations of motion as commonly used;

presents the polynomial forms of the more important control-input transfer

functions; and develops an appreciation for the transfer functions and

responses with numerical examples. Based on the physical insights thus

afforded, we then develop further-simplified sets of equations which apply

to the individual modes of motion appropriate for conventional aircraft;

this is followed by similar considerations of VTOL aircraft in hover. Then

we present the complete gust-input transfer functions in polynomial form

and extend our numerical examples to cover these. Approximate literal

expressions for the various transfer function factors are given next; their

relation to the simplified equations are established and their implications

as concerns the direct influence of the dominant stability derivatives on

the important poles and zeros are drawn. Finally, we develop some important

modal response rat-'os in literal form and discuss their implications.

6.2 RCEPITUIATION AMD FMTIfR SILIFICATION
OF THE ZATERAL ERUATIONB OF MOTION

Equations 4-98 are usually simplified according to the following

assumptions:

Assuption 11. In the steady flight condition, the flight path of
the airplane is assumed to be horizontal, yo = 0.

This assumption has already been invoked in the simplification
of the longitudinal equations (5-2) and is repeated here for con-
venience.
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Assumrption 12. It is assumed that Y = Yp = Y, = = N = O.

Generally speaking, this is a good assumption for most config-
urations, especially when only control inputs are being considered.
Notice, however, that for gust inputs the assumption eliminates
completely the pg term in the Y equation, and requires IYisl<<Yv
in addition to the more readily evaluated IYII<< 1. Also, in the
N equation Nr' /Uo is retained while NV is dropped, whereas they may
both be of the same magnitude. In all cases the validity of the
individual assumptions should be checked for the frequency range of
interest, once the derivatives are known, by the process described
on page 5-3 in connection with Assumption 10. Despite such'reserva-
tions the approxin-ations generally introduce only small errors, and
are in accord with common flight control practice.

With these assumptions the lateral equations of motion, referenced to

stability axes (Eq. 4-98) and conventionally written in terms of p = v/Uo

rather than v,4 become:

(S-yv)p - g + r = Y56-Yvf

+ (s-i4)p - L4r = Lb- + (L4)gS] g- pg (6-I)

-N - Np + (S-Nr)r = N;5- [N + (Nr)gS ]g- Npg

In terms of the unprimed derivatives, the equations (4-91) can also be

written as:

(S-Yv)P - Uo Ybb - z

-13 + (s-LP)p - (IxZs+Lr)r = 16 - 3  - 1Pg (6-2)( Ix )
- L z s+Np)p + (s-Nr)r N66 - (N NrS)Pg - NpPg

The auxiliary relationships needed to convert the motion quantities to

those usually sensed by flight instruments are (from Eq. 4-96 and the

Y inertial terms of Eq. 6-1):

p = sT
r = s' , (6-3)

ayc.g. = uo -g(p/s) + Uor - g + Uor

4To do this we define Ya Yb/U o and note that 14v = ,Nv N N
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6.3 COW1FL-INPUT TRAIFER FUNOTIOI

The control-input transfer functions are easily obtained from the

equations of motion as previously discussed and illustrated. For

example, the P-output to 5-input transfer function can be written

directly from Eq. 6-2 (i.e., assuming no gust inputs) as:

y* -g I
Y6 U0

(s - LP)s (Ixz + Lr)

s)N8 \Iz +Np s s -r

8(s) _ (6-4)
6()-g 1Is -Yv -9

U0

- (s - Lp)s i x
(-xz ,+4

Expanding the determinants gives the transfer function as a ratio of

polynomials in s, where the denominator polynomial, /(s), is common to

all transfer functions, and its factors determine the characteristic

frequencies and dampings, or time constants, of the individual modes of

motion. The numerator polynomials vary with the output quantity of

interest. The polynomial forms of the primary lateral transfer functions

are given below, together with their usual factored forms:

_ _(s) = Aps3 + B Cs2 + D(6-5)

5(') Ala t  6lat

Ap(s + 1/Tp3)(s + 1/TP2 )(s + 1/TP3 )

Alat
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Mq'{s) _____+________

at Alat(6-6)

( + 2toy + (-

Alat

r(s) Nr(s) ArS3 + Brs2 + CrS + Dr

5(s) Alat Alat

(s + 1/Trl)(s 2 + 2 trars + a)

Ar 
or

(B + I/Trl)(s + 1/Tr 2 )(s + I/Tr 3 )

61at

ayc.g.(s) Nyc "g (S) AayS + Bays3 + Cays2 -;Days + Eay

STAat Alat

(6-8)

Aay(s + 1/Tayl)(s + 1/Tay2 )(s + 1/Tay3 )(s + 1/Tay,)

lat

where Ala t = As4 + Bs3 + Cs2 + Ds +E

((s + 1/Ts)(s + 1/TR) (6-9)

= A or ( 2 + 2tdads + c)

(s2 + %w _s +

An additional "a" or "r" subscript is often used on numerator quantities

to specify aileron or rudder, respectively.

The literal expressions for the various A, B, C, etc., coefficients

of Eqs. 6-5 through 6-9 are given in Table 6-I. There the coefficient

expressions are in terms of unprimed derivatives, but can easily be
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converted to prime derii-ttives by the simple expedient of elimirMting all

Ixz terms and priming the L and N derivatives; the compactness thus

achieved is self-evident. While either the primed or unprimed form may

be used, as convenient, to obtain the polynomial numerator and denominator

expressions and eventually the factors, the transfer function gain is

properly computed only when the same derivative forms are used in both

numerator and denominator. This follows directly from a consideration

of the A coefficients given ,in Table 6-I. For example, the high frequency

gain of the P transfer function is given by:

P = = = - (6-10)
5(s) As 12

If now the prime derivatives were used (i.e., Ixz = 0) for both numerator

and denominator, the result would be the same. However, mixing the two

forms would produce 12
8(s) A s

or /
5(s) As r1 I2z- s

which are both incorre .t.

6.4 EXAM2L TRANSFR FUNCTIONS, BODE FORMS , AND
TIME REOVONSES FOR A CONVENTIONAL AI1PLIANZ

For the example conventional airplane of Chapter 5 (see Fig. 5-1) the

lateral characteristics are given by:

6-6
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Altitude (ft) .............................................. 20,000

ich number ............................................... 0.638
True airspeed (ft/sec) .................................... 660

Yv ........... -0.0829 Np ............ 3.55
yba ............0........... -0.0025

6r ............ O 116 Nr ............ -0.0957

L. -4.770 Na ...........- 0.615
Lp ............ -1.695 Nbr ............ -1.383
Lr ............. 0.1776
Lba ............ 27.25 x. 0663

Lbr ............ 0.666 Ixz/I z ......... 0-0370

The corresponding primed derivatives are:

. 4546 N' 3.382L ............. -4.54 N ............ 3.38
............ -1.699 N ............ -0.0654

Lr . ............ 0.1717 N. ........... -0.0893

. 27.276 0.3952

S ............ 5758 N0r ........... -1.362

Substituting these data into the Table 6-I forms and factoring the resulting

polynomials yields the following transfer functions (ayc.g./ba is not given

because of its minor importance):

For aileron inputs

-14.38- - S)._ s ( + )i -0 + 1) (6-11)

ba(s) +1( +2(.023
o-0. I 3-55 8\I 777J[(1.8775)2 + 1.8775 -

[ s2 2(0o.0o47) I]
s2 + s+1res (1.859)2 - _____1.8____9

a)- -11070- (6-12)

(.4..+~r..24 2(-0.827) 1
r(s) -54371. I(2.69) 2.659 (6-13)

ba(s)(
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7or rudder Inputs

,= (6-ib)

-o4 (:T (2.;6T + )( --s7 +1)_s., 1 (6-15I)

SA +1.5 s 1 2 +20055 s+1
8r() .777~~ 0.293* (-6

ayc.g.(s) (0.0072 ) +1)(2.; I + )+I
Br(s 00 (6-1)

The roots of the denominator show that the lateral motions consist

of three modes:

* A relatively lightly damped oscillatory mode called the
"dutch roll"

* A first-order divergent mode of relatively lomg time

constant called the "spiral" mode
* A first-order convergent mode of relatively short time

constant ca)lled the "roll subsidence" mode

The subscript notation used in Eq. 6-9 and in subsequent tables and figures
reflects the above nomenclature. The general aspects of these modes will be

discussed n more detail later.

Figu pri apesent the jc-Bode plots of the transfer func-

tions, including amplitude and phase asymptotes. Using these as repre-

sentative of response transforms to unit impulse inputs, as in Chapter 5,

we can draw certain conclusions concerning the appearance of the various

modes in the airplane's transient response.

6-8
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Consider first the dutch roll mode. For all ti-ansfer functions but

/ba the dutch roll peak is a dominant characteristic, indicating that

this oscillation will be a major component of the weighting function

responses. For the exception, y/ba, the quadratic numerator nearly cancels

the dutch roll denominator. Because of this dipole effect, the modal

response coefficient for the dutch roll mode in the weighting function

for 8a input will be small. If the cancellation were exact, the dutch

roll would disappear entirely from this rolling response. Approximate

values for the dutch roll modal response ratios can also be determined

using the jaw-Bode plots because td is small; therefore, a typical amplitude

ratio evaluated at the dutch roll root becomes

Just how well this works for the present example can be seen by comparing

results read from Figs. 6-I and 6-2 with the actual modal response ratios.

Thus, for rudder inputs (Fig. 6-I),

P : c: r 1 [17: 16: 23]d b

' [0 6] db

1 :0.89: 2.0

'and for aileron inputs (Fig. 6-2),

P : c:r "[1h : 18 : 20]d b

[o: 4 :6] db

1 1 :1.6: 2.0

The exact model response ratio is

P: : r = 1 :0.99:1.87

Making the comparison, it is seen that all the plots but (P/ba yield values

which are quite compaxable to the exact set. The difficulty with (/ba

again stems from the presence of the numerator quadratic. The amplitude

ratio of this transfer function evaluated at the exact dutch roll root, sd,

differs considerably from the approximation based on sd " jan. Except for
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this effect, the dutch roll modal response ratios computed from ampli-

Stude frequency response plots evaluated at aU are quite insensitive to
the damping ratio, td, because its effect cancels when the response

ratios are taken.

Turn now to the roll subsidence mode. For this, numerator terms in

both P and r responses to rudder and r response to aileron essentially

cancel the roll subsidence mode denominator. These dipole effects imply

that the roll subsidence mode will be scall in the p and r rudder-input

and the r aileron-input weighting functions. The absence of a similar

near-cancellation of the roll subsidence factor by a numerator term in

the p/6a transfer function might, at first glance, be taken to imply that

the roll subsidence mode component of the sideslip response to aileron

would be substantial. Thus, we might be tempted to conclude that the

relative magnitudes of the degrees of freedom occurring in a particular

mode depend on whether the mode is excited by aileron or rudder. But we

know from the modal response considerations presented in Section 2.5 that

this cannot be so; that, in fact, the response ratios for a given mode are

independent of the input. A second look at the p/Ba and q/ba transfer

functions indicates a large difference in gains at w - 1/TR (when the dutch

roll peaks are ignored) which results in a large jy/I computed for aileron

inputs, just as the near-cancellation of P responses to rudder inputs also

infers a large Ic/pI. All of these considerations imply that the roll

subsidence 'Ls small i-n r and p weighting functions, and that this mode is

then characterized almost entirely by rolling motions. This is, of course,

the origin of its name. The roll subsidence modal response ratios evalu-

ated from the jo_-Bode plots will, in this case, be quite inaccurate if the

plot itself is used because of the close proximity and dominance of the

dutch roll peak. Good results can, however, be obtained i,' the asymptotic

plot is used.

Finally, for the spiral mode the modal response ratios could be

computed from the dc gains if all the other poles and zeros are far enough

removed. For the aileron responses (Fig. 6-2) this condition obtains, and

the modal response ratios approximated by the gain ratios,
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0 : r - (-11,070) (-5437)

1 :770:37.8

correspond favorably to the exact ratios,

r :756:36

The close proximity of a numerator factor to the spiral denominator term

in the p/br transfer functions makes the use of the gain ratios alone

inaccurate for the rudder case; however, the q: r modal response ratio

computed using the'rudder-input dc gains is satisfactory. The predominance

of rolling and yawing in the spiral motion indicates that this mode, albeit

unstable, is nonetheless nearly coordinated. Further, because of the rela-

tively small sideslip, the r : q) ratio is app-Dximately g/Uo (e.g., Eq. 6-3).

Figure 6-3 presents time histories of the responses to an aileron pulse

and a rudder step, which are in accord with the foregoing conclusions. Here

we can see that the primary response to an aileron input is in roll angle;

and that nearly constant angle is achieved in a short time, corresponding

to a response time 3TR of the roll subsidence mode. The spiral mode diver-

gence is not discernible due to its extremely large time constant, 738 sec.

The dutch roll excited by the aileron appears to be mostly in p and r, but

the much larger scale used for the ) trace tends to mask its magnitude

relative to p and r. The magnitudes of these three motions in the dutch

roll mode are more easily seen in the time histories for a rudder step.

Those also show a relatively small. average roll rate response, indicative

of the reduced excitation of the roll subsidence mode by the rudder as

compared to the aileron.

Figure 6-4 presents the time-vector diagrams, which directly indicate

the relative magnitude and phasing of the free motions (phasors) and show

the relative importance of each term in the equations of motion (polygons)

for each mode. Again we see that P is almost nonexistent in the spiral

mode, which consists therefore of coordinated banking and turning (i.e., no

sideslipping) motions. For thj roll subsidence, cp is the dominant motion

parameter; and for the dutch roll, all motions are the same order of
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magnitude. The small amount of lateral motion in the dutch roll is

apparent in the approxiirate cancellation of-the r and sp side force

components, i.e.,
Uo Uo

y - (+*)= -- .(sp+r) o

T. WO-DEGEM-0-MM~ OM DUTMC ROLL APPROXfl4AIONB

Because the q oscillations occurring in the dutch roll mode can be

just as large as the P and * motions, it is clear that they cannot safely

be neglected in formulating a generally applicable set of simplified

dutch roll equations. Nevertheless, by analogy with the longitudinal

short period, this is commonly done in the interests of obtaining simple

physical insight. If we assume, therefore, that the q motions are negli-

gible, then the sum of the rolling moments must be zero at all times and

tiA roll equation is eliminated along with q perturbations. Thus the

equations of motion (6-I), neglecting gust inputs, reduce to:

(S-YV)P + r = 5(1

+ (s -)r(6-18)

The corresponding transfer functions are given by:

b(s) 'u2

(6-19)

r(s)
b(s) "d2

where = s 2 + (-Yv- Nr)s + N' + YvNr

There is, of course, no c transfer function because of the assumptions made.
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For the example airplane derivatives, the rudder and aileron numerical

transfer functions are:

~~( -)(1. + 1)r(s) 0.402, (11

(142 + 2(0.0469) +
1.84 +

(s) + 1
r(s) _ O.021.18 ("0o54 1 )

br(s) -

(6-20)

P(S) - 11661

8a(s)

r(s) 0.00o965- (0.0829 i

Ba ) [ ]

Comparing the dutch roll characteristics, we see that the frequency is

fairly close to the exact value (I.8775), but that the damping is about

twice as high (i.e., should be 0.0243). Also, the direct Bode amplitude

comparisons given in Fig. 6-5 show that while the rudder transfer functions

are fairly well matched, the two-degree-of-freedom aileron approximations

depart considerably from the complete three-degree-of-freedom cases.

6.6 TIMEWDEOEEE-OY OM DL?.M ROLL kPf amOXS

We can improve on our approximation to the dutch roll mode by consid-

ering that several of the smaller terms in the time vector diagrams of

Fig. 6-4c are negligible. Prime candidates are the gravity terms, g/Uo,

the rolling acceleration due to rate of yaw, I r, and the yawing accelera-

tion due to rate of roll, N'p. With these simplifications the approximate

three-degree-of-freedom set, considering only control inputs, becomes:
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(s-Yv)P + r = Y 6

_IP+ =~-~ - L8  (6-21)

-Np + (s- N.)r = Nb'B

For this set of equations the dencninator determinant is:

(S [s +YvN) (6-22)

Here the free s corresponds to the spiral mode, the (s-1) factor to the

roll subsidence, and the quadratic to the dutch roll. The dutch roll

approximation is of course the same as that for the two-degree-of-freedcm

set. Likewise, the p and r transfer functions are unchanged. The advan-

tage of the three-degree-of-freedam dutch roll approximation is to obtain

0) transfer functions. Thus, Eqs. 6-21 yield the following p numerator:

N L + v - Yrt s + 'p ( - 2 + Yr - 'LNl

Lb L6 IJNP

(6-23)

The corresponding nunerical transfer function for aileron-input to

the example airplane is:

F s2 2(0.0474). +
0)(s) (1.82)2 +  1.82 -

ba(s) - 15.71 (6-24)

Figure 6-6 compares the three-degree-of-freedom dutch roll approxima-

tion Bode plot with the complete set. This ccmparison shows that the /ba

transfer function based on the approximate equations is quite close to

that found using the complete three-degree-of-freedom set.
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6.7 TM-DEGEEE-P-nW0EDM SPIR.&L AM~ BOLL~ SUBSnENCE APPROXIMATIONS

Approximate equations of motion appropriate to the spiral and roll

subsidence modes are obtained quite simply from the observation that for

both modes the P motions are relatively small, as showm by the phasors of

Fig. 6-4a and b; and that (s-Yv)p for the spiral mode is negligible with

respect to the remaining side force tenns (see Fig. 6-4a). Accordingly, we

neglect this term to obtain the approximate equations of motion given by:

- (g/U0) + r = Y 8

+ s(s-i)9 - ~r = (6-25)

N - Nsp + (s-Nr)r =Np5

These lead to the transfer functions:

p(s) NE where NO is the complete

b(s) N4tSR form given in Table 6-I

s-Nr + -,L + - + LbPr
V~s) ISN AI -6R (6-26)

r~) _YS2 + - + N')s + # - -6(s) o\

where + [ +i + ~~ s

where BR s2 + + -NU01 s + Uo N'N - L2'
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For the example airplane, these transfer functions are:

I s s

(s) -1.049 -0.0057 + +
r(s) 498 z  W-S-T +

(s)= 498 ( s)( )

r(s) r +4.38 _ +)(6.- 3 + I)

ba(s) 2

-~) -11080-1

r(s) 1

t ~a(s)()

Directly comparing these results with the complete transfer functions
given in Eqs. 6-11 to 6-I7 we see first that the approximate values of the
spiral and roll subsidence inverse time constants are quite close to the
exact value.,; (i.e., -0.00135 and 1.852 versus -0.001355 and 1.777); that the
low frequency gains for both sets are essentially the same, and that the

numerators for both sets are identical. However, the q and r numerator
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approximate factors are quite different from the exact factors. For the
q numerators these differences occur at frequencies greater than that

corresponding to the roll subsidence mode, as might be expected. For the

r numerators the breakpoint differencs occur at frequencies below the

roll subsidence, and it is quite clear that the approximate Bodes will

not closely resemble the complete Bodes at the lower frequencies in the

vicinity of the spiral root.

The spiral and roll subsidence approximations may often be further

simplified by recognizing that for most conventional airplanes the value

of g/Uo[(I'/N)N -I )]is small relative to the other terms appearing in

46R. Then, if YN O,

4 L a N (6-28)

ba(s) 
L

This can be contrasted with the classical single-degree-of-freedom roll

approximation obtained by considering only the rolling equation of motion,

and neglecting P and r motions.

-a- s~ a (6-29)a (S) (s - )

We see that both the gain and the roll time constant are affected by three-

degree-of-freedom considerations, but that the temporal nature of the

motion is not, i.e., the response to a step aileron input is an exponential

increase from zero to a steady rolling velocity in either case.

6.8 O NOARY ON APPOXIME EQUATIONO OF MOTION

In this article we will examine both the discrepant aspects of the

approximations and their positive attributes. In this process we will

take up the various approximations separately first and then consider them

as a whole.
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Two-Degree-of-Freedom Dutch Rcllr
Early versions of the simplified equations of motion for the dutch

roll mode were very similar to Eq. 6-18, but. used the unprimed deriva-

tives in the yawing acceleration equation. A principal virtue of using

the primed derivatives shows up in considering the denominator, aLd2' and

its factors. The fact that a = N +YvNr, as implied by Eq. 6-19, rather

than 2 Np +YvNr is an important distinction. It shows that the effective

directional stiffness is a function not only of the weathercock stability,

Np, but also of the dihedral, I., and the product of inertia, Ixz , i.e.,

N' -NP + IdZL

1 - (Ixz/IxIz)

Thus, even though Np +YvNr -w- 0 it is still possible to have positive

stiffness and a finite dutch roll frequency if Ixz and LP are of the same

sign (i.e., for normally negative LP and nose-up inclination of the

principal axis of inertia to the direction of flight). Such situations

are not uncomnon for high angle of attack conditions where a negative Np,

e.g., due to fin immersion in the wing/body wake, can be stabilized by

overriding negative values of Ixz and I. Of'course unfavorable NP char-

acteristics can also occur, due to either Mach and/or aeroelastic effects,

at low angles of attack corresponding to high speed operation. The possi-

bility of IxzL overriding NP in such situations is small because of the

low angle of attack and correspondingly low 1xz and I generally involved.

The dutch roll damping implied by Eq. 6-19, 2 dwd I -Yv-Nr, is almost

always positive because usually both Yv and N. are negative. There are

rare cases, as noted in Chapter 4, where Yv can become positive; and it is

conceivable that the same high o conditions could "blanket" the fin and

greatly reduce -Nr. Except for such unconunon possibilities, the implica-

tion of the approximation is that dutch roll damping will always be positive.

Divergent oscillations have been observed in practice, so these cannot be
"explained" by this set of simplified equations.

The possible motions for the two-degree-of-freedom simplified

equations must therefore be either a damped (or overdamped) oscillation
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or a subsidence/divergence combination. Both forms have been observed,

but the lightly damped oscillation is the more usual characteristic.

Three-Degree-of-Freedom Dutch Roll

This approximation is intended primarily to allow the computation of

a bank angle transfer function or response to complement the two-degree-4

of-freedom approximation results for yawing velocity and sideslip. It

satisfies this requirement, but is otherwise undistinguished.

Spiral and Roll Subsidence

Until recently the roll subsidence and spiral modes were usually

thought of as unconnected and independent. Physically, the roll subsidence

was associated primarily with the rolling behavior of the aircraft, which

is described largely by the time lag in attaining a nearly steady-state

rolling velocity after a step application of the ailerons. This lag is

due principally to the combination of the roll rate damping moment and the

roll moment of inertia, so the mode is conventionally considered to be

essentially single-degree-of-freedom. On the other hand, the spiral mode

has long been recognized generally as involving at least two degrees of

freedom -yawing and rolling. Since the describing time constant for this

mode involves a very small root of the lateral characteristic equation, the

approximation for the root (i.e., E/D of 6lat) has been well known for

many years.

As can be appreciated from these remarks, no particular reason existed

for further exploration of the underlying physics of the roll subsidence

and spiral modes at a time when most aircraft possessed three-degree-of-

freedom rolling motions that approximated single-degree-of-freedom char-

acteristics. However, modern craft with high effective dihedral, low roll

damping, etc., occasionally exhibit a long period lateral oscillation, and

rolling velocity calculations based on Lba rather than Lba (a./ai) 2 have led

to later surprises. Early contacts with these phenomena called attention to

the problem of obtaining a more adequate physical understanding of the spiral

and roll subsidence modes. Equation 6-25 brings the two modes into their

present closely interconnected context.
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The history related above has certain overtones of repetition because

the earliest partially successful gliders and unmanned aircraft possessed

considerable "lateral stability." In the ter:is used here, the roll subsi-

dence and spiral were both stable modes and fairly close to or actually

in the coupled state. Model aircraft also use the same principles to

obtain as much over-all lateral dynamic stability as possible. It was not

until the Wrights correctly deduced that a "neutral lateral stability" was

desirable for lateral control that the roll subsidence became essentially

single-degree-of-freedom and the spiral simply a minor headache to the

pilot in IFR conditions.

Considering the terms combined in 66R(s), it can be shown that the

time-response characteristics for the lateral roll subsidence/spiral combi-

nation can take on almost any second-order form. The solitary exception on

a norml winged aircraft is two divergent first-orders. All other forms,

i.e., positively or negatively damped oscillation, two subsidences, or a

subsidence/divergence pair, have actually occurred in practice.

Combined Considerations

Preferably we would like approximate relationships which could be

connected together in some logical fashion to give a fairly accurate

picture of the complete three-degree-of-freedom situation. As already

noted, in terms of the denominator the two three-degree-of-freedom approxi-

mations to the dutch roll and spiral/roll-subsidence modes offer a combined

set of denominator dynamic characteristics in general quite representative

of the complete situation. The major denominator deficiency is the dutch

roll damping. This can be alleviated by considering that the damping for

the spiral/roll-subsidence mode is more correct than that for the two-

degree-of-freedom dutch roll, and by recalling that the s3 coefficient of

the complete denominator is the sum of all the jamping terms. Then a better

estimate for the dutch roll damping will be

2Q)) (YvN L)-[r + (N~ )](6-30)
N_ ' _

S (-Yv-, r- 1 N )
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For normally negative t and positive N , negative values of N and/or

small values of Uo will result in a negative damping contribution due to

the added term. This can be large enough to overpower the "two-degree-

of-freedom" damping provided by (-Yv-Nr) and thereby to produce a

divergent oscillation.

Unfortunately, as observed earlier, the various example-case

approximate numerators show a very spotty correspondence with the exact

numerators. In all cases, however, we can say that for the spiral/roll-

subsidence the asymptotic low frequency gain/dynamics closely approximate

those for the complete transfer function; also, either of the dutch roll

approximations approaches the correct asymptotic high frequency gain/

dynamics. As for the numerator factors, those that are reasonably correct

numerically for the example airplane are limited to:

Two-degree-of-freedom dutch roll

PB/, r/ --- Good agreement at high frequencies

Three-de. ,'-of-freedom dutch roll

q/ba - Identical to exact complete numerator if Yba = 0

p/b, r/b, q/br* - Good agreement at high frequencies

Three-degree-of-freedom spiral/roll- subsidence

(/Ba - Good except in immediate region of dutch roll

P/ba, P/br - Identical to exact complete numerator

This picture contrasts somewhat to the situation for the longitudinal

approximatiofis where the numerator and denominator factors are in better

agreement with the exact factors. It appears that the use of simplified

modal equations of motion cannot in general yield good approximate numerator

factors; and that another approach to approximate factors is required to

supplement the approximate equation technique. *Such an approach was out-

lined in Section 3.4, and has been applied extensivelyt to the problem of

obtaining approximate factors.

*Not given in text; computed example-case factors are 2.75

te.g., I. L. Ashkenas and D. T. McRuer, Approximate Airframe Transfer
Functions and Application to Single Sensor Control Systems, WAIC TR 5U-82,
June 1958, Appendix, pp. 191-210.
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6.9 HOVnZ1;G EqUATZON3, CaONOL-INPUT Tpmra~~FMONS 0 AL ME O Riema

In their simplest practical form the lateral small-perturbation

equations of motion in hover are:

(s-Yv)V - g9q = Y86

-Lvv + S(s-LP)q = 188 (6-31)

(s-Nr)r = N68

Equation 6-31 assumes Uo = Np = Lr = Ixz = Nv = Yp = Yr = 0 and applies

fairly well to any hovering vehicle without a tail rotor, or with a tail

rotor of high disk loading. It is not completely valid for typical

single-rotor helicopters because the tail rotor, being of low disk loading,

is sensitive to local sideslip velocity perturbations and hence generates

(for example) Nv and possibly Lr and Np. Notice that it is completely

analogous to the longitudinal hover equations (5-34)-with q replacing 0,

v replacing u, and r replacing w; the Y, N, L derivatives replace X, Z,

and M derivatives, respectively. The resulting transfer functions and

modal responses are correspondingly similar in form to those given previ-

ously for the longitudinal motions; that is:

r(s) N8  (6-32)

8(s) s - Nr

5 L(s - Yv + L v

(s) bover (6-33)

V(S) Ys (6-34)
6(s) 6hover

where Nhover = s3 + (-Yv -Lp)s 2 + YvePs - gI'V (6-35)

From these relationships we see that the s Nr mode is associated only
I6
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with yaw rate perturbations, r, and doesnot appear in either q or v

41 motions. Conversely, there are no r motions in the modes associated with

the lateral hovering cubic (Eq. 6-35) which usually* factors into a nega-

tive real root describing a stable mode, plus a complex pair associated

with a lightly damped, or unstable, oscillatory mode.

The similarity, in form, of these and the longitudinal equations is

matched by similarities in the derivatives. For most hovering vehicles*

Xu = Yv and Ix~v = -IyMu; however, the equatons of motion are not numeri-

cally identical because usually Ix / Iy, hence Lv # -Mu even if IxLv =-IyMu.
Similarly, Mq / Lp, although often IyMq = Ix p . Despite this, the analogy

between longitudinal and lateral equations is sufficiently complete to

suggest that the root locations and modal response coefficients may be very

similar.

As an example which illustrates this we again choose the configuration

shown in Fig. 5-7, and consider small perturbations from a near-hover con-

dition (U. = 1 .0 ft/sec) to detect any possibly significant effects of not

being exactly at hover. As will be shown, the effects of small Uo are

trivial. Yp = Yr = Yba = Lr = Nv = Np = Nba are zero, but Ixz / 0 and

this produces some coupling of the yawing mode (s-Nr) with the roll and

sideslip modes. Because the example configuration has no tail rotor, it

has essentially zero Nv, Lr, and Np. The assumed characteristics are:

Weight (lb) .................. ... ...... ........ 3,100
Roll inertia (slug-ft2) ............ ........... 1,990
Yaw inertia (slug-ft2 ) ................. .... 3,940
Groundspeed, Uo (ft/sec) ............. . ... . 1

Yp ............ 0 1p ............ -0.271

Yr ............ 0 Lr ........... 0
Yv ............ -0.111 Lv ............ -0.0122

............ a ............ 0.69

8r ............ 1017 Lrr ............ -0.185

J. Wolkovitch and R. P. Walton, VTOL and Helicopter Approximate Trans-

fer Functions and Closed-Loop Handling Qualities, Systems Technology, Ithc.,
Tech. Rept. 125-1, Sept. 1963.
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............ 0 Ixz/I x  ............ -0.1246
Nr .... . -0.656 Ixz/Iz .. .... -0.07188

NV ............ 0
I% . ............ 0
Nar ............ -0.539

The corresponding primed derivatives are:

.-0.273 o .............. 0.0197
............ 0.0825 W .............. -0.662

i4 ............ -0.0123 Nr .............. 0.oo885
La ............ 0.696 Nga ............. -0-0500
L4r ............ -0.119 N6r .............. -0.531

For the above assumed characteristics, the control-input transfer functions

are:

For yaw contro, 8r

p = o-0.119 (s + 0.267)(s + 1.008)
5r Alat

r -0.531 (s + 0.886) [s2 - 2(0.348)(O.674)s + (0.674)21

Alat

v _ 1.017(s - 1.75)(s*+ 0.994)(s + 2.22)

r at

For roll control, Ba

= 0.696(s+0.14)(s + o.6564)
bAlat

r -O.O5OOs 2 (s + 0.14) (6-37)
Alat

V 0.0500(o + o.657)(s + 447.0)a Alat

where

Alat (s + o.653)(s + 0.888) - 2(0.347)(0.669)s + (0.669)21
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Bode diagrams of these transfer functions and time responses for impulsive

ba and 5r inputs are given in Figs. 6-7 and 6-8. The Bodes, in general,

show the approximate cancellations of the hovering cubic in the r transfer

function and of the (s-Nr) subsidence mode in the q and v transfer func-

tions, as anticipated by the approximate expressions 6-32 through 6-34.

The one exception is the r/a Bode which is radically different in appear-

ance from r/br. This difference is traceable to the product of inertia

influence, which "recreates" many of the derivatives, e.g., 4, N$, N ,

considered zero in their unprimed state, and to the size of these deriva-

tives relative to N6, the normaly important yaw-rate-input excitation term.

The time responses are consistent with the foregoing differences and

similarities. In particular, the yaw rate first-order subsidence can be

clearly seen in the rudder-input response, and the negatively damped

oscillation associated with the hovering cubic is clearly visible in the

cp and v traces. However, the first-order portion of the cubic cannot easily

be separated from the initial portions of these latter responses because

its time constant is near the period of the second-order oscillation. This

mode "subsides" almost completely in about 3 sec so that the residual trace

thereafter is almost entirely due to the second-order.

The time vector diagrams of Fig. 6-9 enhance considerably our under-

standing of the physical nature of the modes of free motion and the

significance of each derivative. For example, the yawing acceleration time

vectors for the "spiral" mode, Fig. 6-9a, show that the approximation s= Nr

for the root is very accurate. The yawing moment induced by roll accelera-

tion, Ixzs2q), is not visible on the same scale, so for this mode the sideslip

and roll equations of motion are superfluous.

The time vectors for the remaining modes present a quite different

appearance. Considering both Fig. 6-9b and 6-9c, it is seen that the balance

of yawing accelerations in free motion includes an appreciable contribution

due to Ixz. However, the time vectors representing the rolling and side

accelerations show negligible contributions due to yawing velocity or

yawing acceleration. Hence these modes can be calculated using roll and

side force equations of motion only.
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Thus, despite the nonzero Ixz , free yawing motions are essentially

uncoupled, and the roll and sideslip motions are similar to the hovering

forward displacement and pitching motions described in Chapter 5. In

this regard, comparing the X force and pitching moment time vectors of

Fig. 5-9 with the side force and rolling moment vectors of Fig. 6-9

shows that the principal difference between longitudinal and lateral

motions is due to the greater damping in roll, Ixp, than that in pitch,

IyMq. (The difference in the inertias is secondary, Ix = 1 ,990 versus

Iy = 1,790 slug-ft2 .) The increased Lpscp (compared to Mqse) vector tends

to distort the appropriate time vector polygon so as to make the damping

angle, sin- I td, -less negative than its longitudinal counterpart, sin- I tp.

Criteria for the neglect of Ixz on the hovering modes can be found

by substituting the missing Ixz terms into Eq. 6-31. The characteristic

equation then becomes:

2 2i(sNr)[(Syv)(s 2l-s) - gvJ, x 2 / (6- 38)

and the conditions for the hovering cubic roots to be hardly changed by Ixz

are « 1

IxIz

(6-39)
Yvlx~z« Iv+ Nr

! XZ<< IYv + Lp + Nrl

The unimportance of a small nonzero forward speed on the dynamics is

shown by the small size of the Uor time \ector, which is invisible in the

roll subsidence and dutch roll vector .ygocs; and, although visible in

the spiral mode, it appears in the suralion of side forces which are not

needed to describe the mode, as noted earlier.

6.10 OUST-INPUT Twsr MOTIFX0N

The gust-in.put transfer function numerators (the denominator is

independent of input and has already been fully considered) are obtained

in their most general polynomial. form from Eq. 6-2, and are given in
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Table 6-2. Here, in order to allow direct conversion to the primed nota-

r tion (Eq. 6-I) by conventional rules (i.e., = 0, L -0-*L', N -- N') we

have included an LXSpg input term not shown in Eq. 6-2; further, we have

distinguished p-gust-gradient-input derivatives with a "g" subscript so

that potential differences between response and input derivatives, e.g.,

as in (Nr)g of Eq. 6-I, can be identified.

Figure 6-I 0 presents Bode plots of the p gust transfer functions for

the example conventional airplane; it shows quite clearly that the major

response is in q. In fact, considering the roll rate response, p (which

corresponds to rotating the q amplitude Bode plot counterclockwise

20 db/decade about the asymptotic zero db intersection, as indicated), we

see that it is exactly equal to the pg input for low frequencies and is

sharply attenuated beyond frequencies corresponding to the roll subsidence

mode. Because the dutch roll mode in almost cancels exactly, the dutch

roll modal response coefficient for q' will be small, resulting in little

qp dutch roll motion. For frequencies below dutch roll the P motions are

quite small, and the r amplitudes are roughly g/Uo times the (P amplitudes.

All these observations are in agreement with our previous ideas regarding

the relative motions appearing in the various modes.

The P gust Bode plots of Fig. 6-11 assume zero gust gradient terms

[i.e., (Nr)g = (Lr)g = 0 (see Table 6-2)] because such terms are incon-

sistent with the step gusts assumed for the time histories to be subse-

quently considered (Fig. 6-12). At dutch roll frequencies the relative

amplitudes between P, q), and r are substantially the same as those for

the rudder-input situations. If the peak amplitudes are used to estimate

the modal response ratios, the result is

r ": r [26 : 26 : 31]db

1 I:1 :1.78

This is, of course, very close to the exact values, 1 : 0.99: 1.87.

For low frequencies, Fig. 6-11 shows that p IPg so that p- Ag L 0;

this means that the sideslip relative to the air mass is zero (see

Eq. 4-83). Thus the aerodynamic side forces are zero and the baking
P
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and turning motions for the spiral mode are coordinated, as we expect

them to be, and as reflected in the g/Uo (-26.3 db) relationship between

cp and r at the spiral inverse time constant. However, whereas for other

inputs (e.g., 5 or pg) the relationship r A (g/Uo)cp holds as well for fre-

quencies below the topen- or closed-loop) spiral mode, for g inputs it

does not. For example, for a Pg ramp input, g = constant, the resulting

steady motions, applying the final value theorem, are p = pg, r = 0,

= (Uo/g) .

Figures 6-10 and 6-11 show that for a given input all motions (except

P/Pg discussed above) follow roughly the same pattern with frequency.

That is, responses to pg excitation are primarily low frequency in nature,

whereas those due to Pg excitation occur primarily near dutch roll. Although

not shown in Fig. 6-11, the lateral acceleration (ay) response at high

frequencies would be quite large. For example, using the basic Eq. 6-3

relationship, :g = UoCp+r) - gqpayceg

The high frequency asymptote is given simply by

ayc.g. 1 Uo(Aps4 +Ars4 ) - gA s3

Pg Jhi freq (Ilz \ s)t

where the A terms are those in Table 6-2. Accordingly,

aye.g.] Uo(A + Ar)

'Pg 1hi freq - ~ 'v(-0

Notice that this asymptote is constant (i.e., not a function of s) and

therefore does not attenuate with frequency. This .situation is analogous

to that noted with respect to the az high frequency asymptote in Chapter 5

and the same corunent applies. That is, the possibility of exciting, and

coupling with, high frequency structural responses must be considered in

any system involving ay feedbacks.

Figure 6-12 presents time histories of the response to a Pg step

and to a pg pulse (rather than a step to keep the bank angle trace within

bounds). The motions shown are consistent with those deduced above from

the Bode plots.
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6.11 COUPLING NumsRWTORS

The general uses of, comments on, and appreciation for the longi-

tudinal coupling numerators given in Chapter 5 apply equally well to the

lateral coupling numerators. In b:.-ef,

* They are required for analysis of multiloop situations
involving more than a single input to the vehicle

* They are simply obtained by replacing motion derivatives
in the characteristic determinant by the appropriate
feedback control-input derivatives

* They can be due to coupling between gust- and control-
inputs and among more than two inputs, control or
disturbance

* They are always of order s2 or lower, and are easily
computed; therefore it is unnecessary to catalogue all
possible combinations

The most commonly used aileron and rudder coupling numerators are

given in Table 6-3, which contains the polynomial coefficients in literal

primed-derivative terms, the corresponding factored forms, and literal.

approximations to the factors. The latter are based on neglecting terms

usually unimportant for conventional airplanes (terms neglected are obvious

by comparison with the complete polynomial coefficients).. For unconven-

tional configurations the approximate factors shown may not be appropriate,

in which case the specifically important contributions to the exact

polynomial coefficients can be used.

6.12 APROXIMLTE YACTOES

We have already derived some approximate factors in association with

the various sets of simplified equations. However we have also noted that,

in general, the numerator factors thus obtained are not necessarily good

approximations to the complete situation. For these we can use a direct

approach which involves factoring the literal polynomial expressions in

Table 6-I by partitioning the polynomial into a form N(s) +KD(s) which can

be factored by servo analysis methods (see Section 3.A). This approach

yields relatively accurate factors for specific "conditions of validity."

Naturally, the relative significance of given derivatives or groups

thereof depends on the vehicle configuration and/or flight condition; therefore,
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as i/the longitudinal case, there is no single set of literal approximate

factors which applies to all situations. This results in the large collec-

tion of approximate factors given in Tables 6--4 and 6-7, which are taken

from the same references used for the corresponding longitudinal tables.

Table 6-4 contains the approximate factors for conventional airplanes,

and these apply also to single-rotor helicopters at speeds over 50 ft/sec.

Notice that the denominator factors are essentially identical to those

obtainable (Eqs. 6-22, 6-26) from the three-degree-of-freedom dutch roll

and spiral/roll-subsidence approximate equations of motion. Some of the

numerator factors are expressed in terms of unprimed derivatives and some

in terms of primed derivatives, depending on which results in the more

compact form. As noted earlier, this may lead to confusion regarding the

proper value of the transfer function gain; this is, however, easily

resolvable according to the rules given on page 6-6.

The various expressions in Table 6-4 indicate directly the deriva-

tives of primary importance for a given dynamic mode and the connec-

tions between denominator and numerator factors. These connections are

specifically spelled out for conventional aircraft in Table 6-5, which can

also be used to indicate the gross effects of artificial stability deriva-

tive augmentation via motion feedback to the control surfaces.

In geheral, the conditions for which the Table 6-4 approximate factors

apply are inappropriate for hovering and transition flight of helicopters

and VTOL aircraft. The latter situations are treated in Table 6-7, to

which Table 6-6 serves as a guide. In Table 6-7 we continue to refer to

aileron and rudder controls; as noted in Table 6-6, these are to be taken

as whatever devices are used to produce rolling and. yawing moments, respec-

tively (e.g., min rotor lateral cyclic pitch and tail rotor collective

pitch for a single-rotor helicopter).

We can check some of the VTOL approximate factors against our example

hovering vehicle. Doing so, we find, for instance, from Table 6-7a and b

that the approximate expressions yield

= o. 696(s + O. 14) (s + o. 662)ba MS (s +o.662)(s +0.873)[s2 - 2(0.347)(0.662) + (0.662)2]
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TABIE 6-5
QUALIT.TIVE IMPORTANCE OF NORMAL AIRFRAME STABILITY PARAMETERS

TO IATERAL, AILERON AND RUDDER INPUT, TRANSFER FUNCTION QUANTITIES*
CHANGr CH.G 1;PIZTO

DERIVATIVE 11 Lp L, Mr and Yv Np Nr FOPG A T CHNGE CHTALGE P POfLIT OF
SEhSOR OCDATIOH; IN Ixz COFTOL APPLICATION

1. Denomilnators &(a)'

a. Spiral Mode, 1/Ts  3= xx xx xx

b. Roll Subsidence Modes I/Ti I xxx x x

c. Dutch Roll Undamped Frequency, uwd xx XXX xx

d. Dutch Roll Damping, 
2
941d xx xx x xxx xx

*. Lateral Phugoid Undamped Frequency, aSR xxx x 3= xx

f. Lateral Phugoid Damping, 2 
SWSR XX xxx XX x

2. loll (Ailercn Input) Nuierator, ?1a(a)

a. Undamped Frequeticy, aq, xx XXX x to xxx (as re-
flected iti Cnba/Cla)

b. Damping, 2
slac X xx = x

3. Roll (Rudder Input) Numerator, No r(a)

a. Undamped Frequency, cv, or Product of

First Orders, 1/Tq ITC x x xx x x to xxx

b. Damping, 2pqru or Sum of First Orders,

I/T I + 1/T x x xx x to xx

r. g4ng Velocity (Aileron Input) Numerator, Nra(s)

a. FLrst-Order Factor, 1/Tra Undanped Frequency xx xx
of Quadratic Factor, ura

b. Quadratic Factor Damping, 2traOra xx xx x xx to xxx

Yo Xaving Velocity (Rudder Input) Numerator Nbr(s)

a. First Factor, I/Tr1  xxx

b, Second Factor, 1/r2  xx xx to xxx

c. Third Factor, 1/r 3  xx xx xx x

d. Quadratic Factor Frequency, u xx xx

a. Quadratic Factor Damping, 2 r  x x x x

6. Sideslip Numerator,

a. First )actor, I/To, xx XIC X x x

b. Second Factor, I/% 2 x x

c. Third Faztor, I/T1p3 (INJder Input) xix

7. Side Acceleration (Rudder Input) Nuncrator, Nar(s'

a. First Factor, I/Tay x x x x x x

b. Second Factor, '/Ta 2  xxx

c. Third Factor I/T xx xxx x xx

d. Fourth Factor, 1/Tayn xx xxx xxx

a. Quadratic Factor Frequency, W0y xx xxx x xx

f. Q adratic Factor Damping, 2 - - J xx - x xx

*The only stability parunoters considered in this Table are those that CODE
(1) eist in the normal uncontrolled airframe, and Blanx . ittle or no effect
(2) Can be auenented by relatLily simple asutoatic control systems. k - Moderate effect

xx - Important effect

xx - Predomiin nt effect
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which is in excellent agreement with Eq. 6-37. Because of this correspon-

dence, we can use the approximate factor expressions to answer a variety

of questions. For example, to determine what changes will stabilize the

negatively damped dutch roll mode in the above denominator, one should make

2d A 2 (6-4~2)

greater than zero. It takes about a 2.7-fold increase in -- Y. as

opposed to a reduction by a factor of about 1/20 on -L to accomplish

such a change; and these relative effects are consistent with the inter-

pretation of the time vector polygons of Fig. 6-9c. For the stable system

that results for such changes, the final value theorem applies (Chapter 2),

but now a step aileron input, instead of producing a steady-state roll rate,

as for a conventional airplane (with small 1/Ts), results in a steady-state
bank an~ given approximately by (Eq. 6-33):

Lim q4(t)t_ -* gy (6-n 3)

6.I3 APPROXDATE MODAL RESPONSE RATIOS

We have already studied the modal responses of selected example

configurations by means of the time vector diagrams. Now, on the basis

of the approximate factors and equations of motion, we can generalize to

show the most interesting literal relationships for conventional airplanes.

Spiral and Roll Subsidence

From the three-degree-of-freedom spiral and roll subsidence equations

(6-25), and first considering the side forces, we can say that both spiral

and roll subsidence (free) motions involve an approximate balance between

gravitn.tional forces (gp) and centripetal forces (Uor), and that side

accelerations are produced only by sideslip, i.e., (s-Yv)p = 0. Unfor-

tunately, the latter condition tells us little about the values of p

relative to the remaining motion quantities. To obtain information on
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this point we can evaluate the modal response ratio P/r separately for

the spiral and roll subsidence modes using the simplified equations.

We choose P/r = i/A23 (see Eq. 5-48) for the spiral evaluation,

whereby

-9 1
Uo

I S -N rs--1/T

oo1131 - -1 s -,T
U0

-N N sS = -1/Ts (6-44)

[sON Uo) u ]

for s -TR ( j-

S Uo\ rN

Substituting the values of s, and collecting terms,

hr LrTR 'N' P
S =  I - TR N P Uo N Uo

k' ! (N ) + L-'-&)

and now substituting for 1/T (from Table 6-j),

M s) r-i __ _ _ __ _ - * (6-45)
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The final approxinuU.Lor follows because of the usual magnitude of the

(N'-g/Uo) term relative to L. Note that it accurately predicts the

balance of yawing moment contribution showm in Fig. 6-4a.

For the values appropriate to conventional airplane flight, Nr/N

is invariably small. The spiral mode is therefore usually characterized

by banking and turning motions which produce little side acceleration

and which, therefore, are approximately coordinated. In the case of an

unstable spiral (1/T,< 0) the uncontrolled bank angle and turn rate

gradually increase (diverge); and as the bank angle increases, the

vertical component of lift is reduced so the airplane's descent rate

increases. Thus the motion through space consists of a tightening

spiral dive, from which the mode takes its name.

For the roll subsidence mode, we evaluate p/r =AI/613:

ps - N-I

Ns s- (s-4)(s-Nr)- LrN]

S(s - Y N ("4) + k ' I 1 /TR

-N -N's

Recognizing that IL,:N/LN.'J<< 1 and dividing through by (s- L-),

\rR Ns-

where S = N' -

TR N P

U0 6P
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When (N -gUo) is identically equal to zero, (P/r)R is also

identically zero (Eq. 6-4v6). Then, to the extent that Lr contributions

are generally neglUgible, the single-degree-of-freedom dynamics apply

regardless of the value of g/Uo . This result is also indicated by the

fact that for (K -g/U o) = 0 there is no difference between -1 and 1/TR.

Nevertheless, even for these ideally suitable circumstances the single-

degree-of-freedom approximation is not adequate to accurately describe

the magnitude of the rolling response which can be affected by P motions

induced by aileron yaw (e.g., Eqs. 6-28 and 6-29).

Dutch Roll

The dutch roll motions, being oscillatory, are basically much more

complex thaf the first-order spiral and roll subsidence modes. Neverthe-

less, as we shall see, there are pertinent generalizations which can be

made. To derive these we examine the modal response ratios, 9/ and /p,

as obtained from the complete characteristic determinant of Eq. 6-I:

) s -Yv 1

S(s-L) -L.r

.-Ls -Y +

s2 g'

0

where = +

Noting that, usually,fIYvL.I<4II and J(g/Uo)Lr4<< a2, and substituting the

expression for s but dropping the subscript "d" for convenience,

T + t - J Al- 77 -(6-47)
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The magnitude is given by

and for negligible L . terms, u~l = N an -I 1 /T R.

I _I, + 1 , ( 61,t2 )

The d term is usually negligible and is of'ten discarded.

The phase angle (Eq. 6-47) is given by:

_ 2t 2) - 2 + W1tan- V t2 ( + 2g )

'3 2 + c 4 ~221 + i~rw

which, using the identity tan-I x -tan-ly = tan -I 
-y-- reduces to:

1 + xy'

+ t A(6-I0)
ci =(2 2-1)i + ca4+ ci L +toL IL

For niN l and e< , and dividing numerator and denominator by a =

_ taI () (6-51)
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Assuming L. terms are negl.igible and 2 du <<- 1 /TR,

a I Fa- 1TR (6-52)

For IN' -0, so that only L' terms are left,

_ tan-1 
1

a %TR

But, from Eq. 6-h 8 Iv/e12 = ,2/( 2+ is very small, so that effectively

c-i-O and the phasing of cp/p is unimportant. In general, therefore, when

significant q motions do occur, Eqs. 6-49 and 6-52 are pertinent.

These relationships show that the predominant effect on the magni-

tude of the rolling motions is the ratio L/N , with the roll damping of

increasing importance in reducing the motions as 1/4T I/i approaches

and exceeds unity. The phasing between the cp and P motions is influenced

primarily by the value of udTR; i.e., from Eq. 6-52 for smAll td,

A tan-1 1 tan-1(J)
allTR

and the bank angle therefore leads sideslip by less than 900 for > 0.

The leading phase relationship is a result of the fact that in the dutch

roll mode P is of opposite sign to the heading change, 4, as we shall see

below. Thus, referenced to the yawing oscillations, q lags * by from

approximately 900 to 1800 as the roll damping decreases from large to

small values.

To evaluate */P as simply as possible, we express the side force

equation (Eq. 6-I) as:

r g -. +(sS-Yv) = 0
Uo



so that

-S)+Y + Op) (6-53)

where = +

Generally, Yv is very small with respect to acn, and for reasonable flight

speeds, U0, so is (g/Uo)(v/); accordingly,

(T)d -sd or () -d

Recognizing that (for yo=0) *= r/s, we get finally

( ) - (6-94)

We see, therefore, that the usual heading and sideslip motions in dutch

roll are consistent with those in relatively flat yawing oscillations.

Implying from this that the rolling motions are not of primary importance

leads to the two-degree-of-freedom approximate dutch roll equations of

motion (Eq. 6-18) presented earlier.
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IT

EI!MMAR LONGITUDINL FEEDBAC CONTROL

A most powerful approach to obtain an appreciation for the effects

of automatic control on the motions of an aircraft is to consider closed-

loop systems formed by direct feedback of aircraft motion quantities to

the controls. Such systems are idealizations since, in fact, the controls

cannot be moved without lag and instruments cannot sense and reproduce

the motion quantities instantaneously and in a pure form. Nevertheless,

consideration of these idealized systems shows the ultimate performance

approachable by some practical system or, by way of contrast, reveals

directions in which it would be unprofitable to proceed.

The prototype for all the systems to be discussed is the single-loop

flight controller shown in Fig. 7-1. This illustrates the direct feed-

back of a generalized aircraft motion quantity, , to a control deflec-

tion, 8. The reader will recognize that the transfer function which

belongs in the controlled element block may be any one of the several

developed in Chapters 5 or 6, which relate the aircraft motion quantities

to control deflections. Table 7-1 lists the most promising possibilities

in connection with longitudinal motions. Control using all of the output

quantities listed will be discussed below using elevator as the actuation

quantity.

In many situations it will be instructive to consider that the

controller is simply a gain, but in other cases it will be desirable to

provide for lead, or lag and lead equalization. Yet in each instance

only a single output motion variable will be of interest or concern.

7.1 EEDBACK OF PITCH ANGLE AND PITCH RATE TO TH1 ELEVATOR

Historically, the earliest automatic pilots comprised a vertical

gyroscope and an associated actuator which deflected the elevator in such

a way as to oppose departures from the reference or conmianded pitch atti-

tude. In modern terms this would be described as negative feedback of

the pitch attitude, e, to the elevator control deflection, be. The
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Aircraft Output
Control Deflection Motion Quantity

a) The Open -Loop System (Controlled Element)

Controlled
Controller ElementCentrolOuptM io

Command Error Deflection u Mtioy
cc Ce Gain and VS

b) Elementary Single Sensor Control System

Fig. 7-1. Feedback of Aircraft Motion Quantities

TABIR 7-1

LONGITUDINAL MOTION AIRFRAME OUTPUJ ARD ACTUATING QUANTITIES

OUTPUT QUANTITIES ACTUATING QUAITIES

9: pitch angle be, elevator deflection,

q, pitch rat- bf, flap deflection

a, angle of attack, w/Uo

ax) longitudinal acceleration

a., noral accelerationazc" - xa

h, altitude
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appropriate controlled element transfer function is therefore e(s)/8e(s),

Ne Ae (s + el ) (B + 1)e(s) be Ae + ( +

ol Uo 2 (7-1)
be(S) Along s 2 + 2tpwS + 4] [ s 2 + 2tspwspS + 0)2

In what follows several variants of this controlled element transfer

function will be considered. First, we assuc- that the airplane pitch

attitude characteristics are well. behaved, with good short-period damping,

large separation between short-period and phugoid frequencies, etc. Then

we explore a variety of less favorable characteristics, indluding insuffi-

cient short-period damping, longitudinal divergences of one kind or another,

non-zero position error, etc.

Conventional Pitch Attitude Control

Figure 7-2 shows the block diagram of the e to 8 e (-- b be) feedback

control system with a pure gain controller. The figure also contains a
"system survey" using Bode and conventional root loci to show the loca-

tion of the closed-loop roots as a function of the closed-loop system

gain. The dyramics of the uncontrolled vehicle represented by the open-

loop characteristics illustrated in Fig. 7-2 a'ce typical of a well-behaved

aircraft in cruising flight at modenate altitudes. The nain features of

these characteristics are the wide separation between the short-period

and phugoid beeakpoints, in both amplitude ratio and frequency, and the

relatively heavy damping of the short-period mode.

From the system surveys it can be appreciated that, at moderate gain,

the modified (closed-loop) phugoid roots are driven into close proximity

to the zeros while the shorL-period roots move to a higher frequency and

lower damping ratio. This is not iundesirble provided the open-loop

short-period damping is not initially already marginal. The key point

is that the phugoid damping increase is obtained at the expense of the

short period. In fact, the total system damping is unchanged by the

feedback of terms which, when considered as creating or augmenting

stability derivatives, do not affect the coef'icient of the secQnd term
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in the characteristic equation. Such feedbacks, which do not augment

tXu, Zw, M, Mq, etc., can only redistribute the open-loop damping among

the closed-loop modes. This is a specific example in somewhat different

terms of a general algebraic rule previously given (in Chapter 3) as

Rule 10 for the root locus method.

The closed-loop asymptotic amplitude Bode constructed for moderate

gain shows, by its nearly flat properties in the vicinity of the modi-

fied phugoid, that this mode will be suppressed almost completely in the

pitch attitude response to ec comrands. Also, as a consequence of the

heavily damped phugoid, any fluctuations of the other longitudinal

degrees of freedom, such as speed and altitude, will exhibit well-damped

long-period characteristics. This will be true even if the uncontrolled

aircraft has negative phugoid damping. For these reasons the feedback

of pitch angle alone to the elevator has been, and will continue to be,

a successful control techn'.que in many aircraft.

Attitude Control for Smll Stat.c/Short-Period Gain

In the feedback system described above the open-loop gain does not

become infinite at zero frequency and, therefore, the closed-loop frequency

response has an amplitude ratio slightly less than one at low f requencies.

This corresponds to a small steady-state position error in response to

step commands, which is not serious for the condition descrited in

Fig. 7-2. However, the situation is likely to be aggravated at low speed,

as in landing approach, or at very high altitude. Here the static-to-

short-period-gain ratio, 1 2/T01T02 , is likely to be soll and indeed

may well be less than one. When this occurs the long-tem resporse of

the closed-loop system to commands is very poor. Figure 7-5 presents the

0 - 8e system survey plots for such an airplane in the approach config-

uration. The typical closed-loop zero db line showm is for a gain which

is about as .arge as possible without seriously degrading the closed-loop

short-period damping. Yet, as indicated graphically by the closed-loop

asymptotes, there will be a very low frequency lead/lag and a DC &iin less

than unity in the closed-loop pitch attitude transfer function. In the

indici:t). re,;ponse of 0 to a step Oc these correspond to a very long time
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constant mode and to a steady-state position error. The closed-loop
4 asymptotic plot, when considered as a frequency response, also exhibits

this low frequency "droop" as a region, indicated by the cross-hatched

area, where the output/input amplitude ratio is less than unity.

To define more precisely the aircraft characteristics which govern

the static-to-short-period-gain ratio, 1/4TeiTe2 , we can express it in

terms of the approximate factors

- zqxu- xw + Zb- x ,- XuM")
1 uW M8e(W (7-2)

wPTeITe2  _uo Zu)

For the simplified but quite nornal conditions where j ZwMq/ 14. << 1,

I Ze/%ZwMeI << 1, and the Mu terms are negligibly srall, the static-

to-short-period-gain ratio becomes

1 ZwXu- XwZ

Cele 2  - oZu

UoNw

" gu [-X (Xw g  u 1

'- IZ ++ u

The magnitude of 1/4Te1 T 2 will be unity when 1/Thl = 0 and less than

unity as 1/Thl decreases to negative values. As developed in Chapter 5,

1/Thl 4.b given by

1 1 k) _ )
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Thus, a static-to-short-period gain of 1 .0 occurs approximately at

perfornance reversal, m/Thl " dD/dU - T/6U = 0. This is also usually

close to the condition for minimum drag, i.e., dD/dU = o. Because near-

minimum-drag flight is sometimes desirable from a performance standpoint,

flight conditions near the performance reversal are not uncommon.

For automatic pilot systems which are intended to follow commands,

such as systems with attitude-hold features, the deficiency in low

frequency gain can be made up with a form of-integral control. A "pitch

integrator" is added ir), parallel to the stra.ight-through gain of the

controller. This configuration is shown in Fig. 7-4. The transfer func-

tion of the controller is now Ke +Kjs and an integration and higher

frequency lead) (Ke/s) (s +K5/Ke), are cascaded with the open-loop function

representing the dynamics of the airplane. As indicated by the amplitude

ratio asymptotes for the compensated system, the lead time constant

represented by the ratio Ke/KG is chosen so that its breakpoint, Kb/KG,

is greater than wp, thus making the low frequency amplitude ratio in the

region of ap as large as feasible. This effectively eliminates the

"droop" shown in Fig. 7-3. The addition of the K5 feedback introduces a

fifth root to the characteristic equation without changing the sum of

the roots. The total system damping therefore remains constant and,

since the added root is a low frequenqy subsidence, the effect of the

integral feedback is to detract from the phugoid damping. This is, of

course, offset by the Ke feedback which damps the phugoid by taking

damping away from the short period.

Attitude Control with Deficient Short-Pertod Damping

Somewhat by contradistinction to the two cases just considered,

Fig. 7-5 is a system survey of e 8 e feedback for open-loop dynamics

appropriate to an interceptor at supersonic speed and high altitude.

Here the damping of the longitudinal short-period motion is weak, and

the feedback causes it to deteriorate rapidly with increases in the

controller gain. The desirable suppression of the phugoid, therefore,

may be considered to exact too high a price with regarl to the short

period. To alleviate the short-period damping deficiency a pitch rate

7-8
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signal can be fed back, as in a pitch damper, to produce an elevator

deflection and a corresponding pitching moment proportional to pitching

velocity, q. i.e.,

e = -Kqq (7-5)

or Mebe = _KqMeq

This feedback then has the same effect as an increase in magnitude of

the stability derivative Mq. As seen from the short-period approximate

factor

2 sp (1- + Mq+ 1,)(7-6)

an increase in -Mq directly increases the short-period damping.

This same effect is illustrated in the system survey in Fig. 7-6.

These plots show that at a comparatively low vralue of the loop gain the

short-period motion can easil.y be overdamped. The phugoid motion is

hardly altered by the action of this relatively low gain feedback,

although it can eventually be ove rdamped, with an attendant reduction in

frequency, for sufficiently high gain.

Figure 7-7 illustrates the combined effect of pitch rate and pitch

angle feedback for the preceding high speed, high altitude case. Now,

at only moderately high controller gains, the phugoid is heavily daned

and suppressed for attitude cona.ands and the short-period motion is also

heavily damped. This technique is so efficacious that it has become

nearly universal, and most modern automatic pilots feed back pitch angle

and pitch rate signals to the elevator. The techmique is applicable not

only to aircraft with typical dynamics, such as the ones which have been

illustrated, but also in cases where the longitudinal motions of the

vehicle alone (open-loop) are unstable.

Pitch Attitude 0ontwol of Lo,gltud na1 Diveraences

As we have soon in Chapter 5, the phugoid oscilation Pay become a

convergence and a divergence, especially in the h,.gh subsonic flight

regime. The unstable divergence is sometimes called the "tuck" mode

because it usually mnvfests itself ,as a slow increase in speed and
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nose-dwn pitc" attitude. "Tuck" is, in essence, a static instability

due to an gu whi,2h is sufficiently negative to make

- MV% -" < 0 (7-7)

The result is a pole on the positive real axis.

Figure 7-8 presents a system survey for the feedback of pitch angle

to elevator when the aircraft exhibits a tuck mode. The cr-Bode diagram

shows that at a very moderate gain, corresponding to an open-loop DC gain

of 1.0 (zero db), the closed-loop root crosses from the right half to the

left half plane, and the closed-loop system becomes stabilized. The value

of pitch angle feedback is evident here. Pitch rate feedback would serve,

as before, to damp the short-period mode.

Figure 7-9 shows the effect of pitch angle feedback to the elevator

in connection with another form of longitudinal instability. In this

case the short-period oscillation has become a convergence and divergence

associated with the inequality

MqZ- Ma, < 0 (7-8)

due to a sufficiently positive value of Ma. In all practical cases of

this kind the inequality of Eq. 7-7 also applies. One possible fix for

this condition is a pitch attitude control system. It my be seen in

Fig. 7-9 that the feedback of pitch angle and pitch angle rate can

stabilize the violent instability and that, here again, the value of this

particular feedback is strikingly illustrated.

Still in connection with pitch angle feedback, consider the case of

a hovering VTOLaircraft or helicopter. The transfer function relating

pitch angle to longitudinal control is given by

Se(s (7-9)

+J Y- + 2 tpa), +2
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This is quite diifer.nt, in both form and kinId, from the corresponding

0/6 for a typical aircraft in forrard flight. Not only does the transfer

function have a third-order dengoinnater, but typically the low hrequency

oscillation is tustable (tp < 0). The system survey of Fig. 7-10 shows

that when the feedback loop is closed at moderate gain, the divergent

oscillation is made stable. Of course this possibility depends on 1/Tsp

being sufficiently large. If it is not, pitch rate feedback should also

be employed. This necessity is real for the majority of helicopters and

VTOL machines, and Fig. 7-11 shows the effect of both pitch angle and

pitch rate feedback. For simplicity the lead is set equal to 1/Tsp,

although this will not be true in general. Once again the benefits of

these feedbacks, in combination, are apparent.

All. of the systems described in this article are conditionally stable.

That is, they require a minimum value of gain for stability to be attained.

In actual designs this property denands careful consideration of nonlineari-

ties (such as limiting), which tend to reduce gain from the nominal, srra.l

perturbation, linearized values.

Generalized Pitch Attitude Control and Nature of Gain Adjustments

Accumulating the experience gained from all. the cases treated above

indicates that a general pitch control. law with rate, proportional., and

integral terws would be adequate for all conceivable p:,tch corm.Innd control

and attitud: stabiiiz-ation situations.' This would have the form

be = Kbbe + K0Oe + K~f~et (7-I0)

or, in transform style,

- +

s + T)(I TE2)

7-17
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In most systens where pitch coimrkand, 0c, is often steplike in nature the

rate term, shown here as Kb0e, is actually mechanized as Kbb to avoid bad

effects due to a pulsed elevator signal at the initiation of the conmmnd.

This is, however, a detail which need not concern us further., While the

control aw form of Eq. 7-10 is generally satisfactory, the gains must be

made consonant with the control requirements imliosed by the airplane

characteristics. Since the latter vary with changes in the conditions of

flight, the gains must sometimes also be modified to acconmiodate these

changes. The characteristics of the variations actually employed depend on

the specific var-_iations of key stability derivatives, the functional mecha-

nization of the gain-changing devices, and the specified closed-loop per-

forance envelope. However, some insight into the nature Of appropriate'

gain variations can be obtained on an elementary basis by considering the

pitch attitude control system sketched in Fig. 7-12. This shows the con-

troller time constants appropriately oriented relative to each other and to

the aircraft breakpoints, and indicates a desirable zero-db line location.

Koh-

a- /s o 7. Ole

Fig. 7-12. Pitch Attitude Control with 6e Koe,- . e +K fOe dt
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When the Controller tixire constants are well separated as shoim, Lhey

may be exprossed in terms of the controller gains as

1 - K K (7-11)
TE1  i2 Kb

If the relative locations illustrated can be zrintained over the flight

envelope, the pitch attitude control will generally be excellent, with

both short period and phugoid extremely well damped and with good dis-

turbance suprression.

The region where feedback is least effective occurs in the flat

stretch between 1/T02 and l/TE2 . Ideally, the amplitude ratio in this

region should be held at or above some minimm level to assure positive

control and disturbance sappression, and to, avoid dynamic "droops" due to

the dipole pairs at 1/Tp 2 and 1/TsPl . The amplitude ratio of the asymptote

here will be given approximate].y by*

A "

(7-12)

"A" can be kept approxiwately constant by varying K0 so as to offset the

variations in Cme/C8 /c. With a fixed e.g. location this ratio varies only

slightly with Mach numbe'c for subsonic and supersonic flight, although it

is different in tbe two regimes. The ratio fluctuates in the transonic

region and is, of coutse, in general a direct function of e.g. location.

All of these factors enter into determining the required change in Ke

with flight condition to rnintain A tt or near a desired level.

*Notice that because of the negative sign on M1e, Ke must also be
negative. In other words, a positive 0c requires an up (negative)
elevator deflection.
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The equalization time constants should be kept approxinrately in the

same positions relative to the key airplane breakpoints. For instance,

1/TE2 should re.. in somewhere between 1/T 02 and Wsp" Thus, as indicated

belw, its basic variation with f.ight environmental parameters should

be proportional to a f'unction intermediate between pUo and pl/Ue ' i.e.,

Sm PUoC < 1 /2Uo (7-1 )
T 02  a, c 7-3

For the simplest condition where a fixed K0 is feasible, appropriateyigKpnereywt l/2Uo
adjustment of 1 /TE2 could be obtained by varying K inversely with

then the closed-loop .short-period time constant, TSP 2 will vary as

I • e oc: P 1/2Uo  (7-14)

In theory, at ].ast, a variation of 1 I/Tr1 with pUo or p1/2Uo can

keep this breakpoint properly located relative to aip and 1 /T 0 2 . It will

be recalled, however, that the addition of integral control wmas only

required at conditions near minimimu drag. These are quite specific. so

generally one or more fixed gain settings can be used instead of a

continuous variation.

In concluding this discussion of single-loop attitude control, two

further things should be mentioned. The first is a defici.ency, one of

the few associated with attitude as a feedback. The tight high-gain

attitude control system described imuiediately above vill tend to hold

the pitch angle constant in the presence of disturbances. As a consequence,

when the aircraft is subjected to gusts this rigidity in attitude prohibits

any weathercocking tendency to nose into the wind and thereby reduce accel-

erations. It also tends to Puke the angle of attack change coincide with

the gust, considered as an equivalent angle of attack. The net results

are somewhat increased structural .oads and linear accelerations due to

gusts over those which would be present in the uncontrolled aircraft with

the same short-period damping. The second point relates to the use of

attitude as an inner loop for subsequent outer loop controls. Although

multiloop systein. are not di.scussed unti l aChaptcr 11, it is pertinent to
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Consider iiexL thc i'c:edlbv re o.' spec.d c rrcr to -Lh, cJ.0vato:. 'J.-!(-

r)x'))i~econtorol:dccl. mnl C4iT;I:ascr .nion (i.th X~c. 0) J. F

Tihe ?,070, 1 /Tlu 2 , can be in ei:.tther the rltghll; or J.c.Pi L half plane, de-pend.-

ing oni Olcv tor :locatilon aft or f'orward arid C)./C!I), Jargar or- zmurlcr than

one * * in any evevit if; is typically very PcAc:rom the oririn, so that

for' 3iost 1?atc~.purposes j-1t can be nqc:,)ected.

Figure 7.-13 5Pr-ere-is the srStcm ourvey fox, ne[,,ative feedlbach, of~ a

speed en-or. Th-JI-s control irsy be ,-,:Een to hswv a. poi-.erul oftfec l on the

'phiwgrod undramped mnWlra). frequency, and al.so to incrcase the phlug-oid

dampinig. The rnod:U'.ed phugo-ld roots rcapid~ly move up wid deeoper into th

1Cle-ft.. plane, arnd conmparc- tiveJly lar'ge dhrping xatios for the phiogold

mode can bc achicv-d before the shorb-pcniod viod. has boonii much altered.

The changc-s to bo'Ll the p)-mgo.-d frx-tuoency and. d&tm~plng U.Lustrated

in Fi.7-13 arec in accord, with the cnporoxin--ato Rictors) i. C".

(7-1 6)
-(XG-g'

*Ashrkenas, JIrvtnU, L.*, and Dia T. 14c1lucr, Approximate Transfer
blumn oio and Applicat-lon to SinOgLe Sensor Colflro). systoms, W)~T-5-2
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where Muaugmented = Mu - KUe'* The same beneficial effects on the

phugoid occur when a tuck is present, and Mu augmentation is often used

to counter such tendencies.

Although the closed-loop phugoid damping is somewhat i4.roved by

the feedback of speed error alone, it is materially increased if A as

well is fed back. This action creates a new stability derivative, Ma;

its effect on phugoid characteristics can be examined with the aid of

the phugoid approxiration equations. When an Masu pitching acceleration

is added to these (Eq. 5- ), the characteristic equation becomes

(s - xu) -x 9.

-Zu (s-ZW) -Uos = 0 (7-17)

-(Mas + Mu) -h 0'

Using the primd notation to indicate that a loop has been closed, the

cha acteristic equation for the modified phugoid becomes

mu IO( - g) gm1aZw MiiZ~Wlt 2 Xu P6 _I o L zu - M
S2 2t.'0  + '2 (718

plp ma(N1, sg _g) M(c-mg) (7-18)
1+ + 1

While Ma is present in the denonmator for both thie damping and the

undamped natural frequency, the quantity in which it appears is gener-tlly

smill relative to one. On the other hand, the gM,17w/MO addition to the

s term in Eq. 7-18 can constitute a mjor modification to the damping.

These conc.usloixs hold, of course, only for the relatively small, values

of gain for which the approximate equations of motion are still applicable.

*No'ice that because of the ncgative sign on MZe, Ku must be posi-

tive to augment Mu. In other words, a positive speed error (speed less
than the set speed) requires a down (positive) el.evator, which tends to
recst;o.e the command speed.
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The system survey of Fig. 7-11k shows that substantially the same effects

Iare present for much larger values of gain.

To increase damping, Ma should be positive, as should Mu to increase

the undamped natural frequency. The effect of the control is thus to

apply a positive pitching moment whenever the speed is greater than the

set speed and increasing. Speed is thus controlled at the expense of

attitude changes. This property can cause difficulties if the pitching

moments used to control speed are too great. The British experience

cited in Chapter 1 is Just such a case where the atmospheric turbulence

components in the direction of flight were sensed by the speed error

instrument, which actuated the elevator in such a way that large and

disconcerting changes in the pitch angle of the aircraft occurred.

An explanation of this phenomenon was discovered by computing

transient responses,* but it can likewise be appreciated by considering

the ratio of the airspeed to attitude numerators for gust excitation.

These are readily computed from the simplified phugoid equations with Ma

added:

(s - Xu)u -Xww +go = -Xuug

-Zuu +(s - z,)w -uose = -zuug (7-19)

-(as + Mu)U -4I= -(Mas + Mu)ug

The appropriate numc rator ratio is

-ug4. XM(is + I) - (7-20)
NOe (MAS+1Au)(s-7ZW) + ZUMW

At frequencies in the neighborhood of either the open- or cloned-loop

phugoid, i.e., either Mu and MA approximately zero or Mu and Ma domrinant,

*S. Neuna rk, The Disturbed Longitudinal 4otion of an Uncontrolled

Aircraft and of an Aircraft with Automatic Control, ARC R and M 11o. 2078,
His Yajesty's Stationary Office, London, Jan. 1943.
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respectively, this ratio of numerators is very nearly the first term in

Eq. 7-20 alone. That is,

U " -g (7-21)

or Ug

su " -gO, imlying du/dt "-go (7-22)

as far as the phugoid motion components are concerned. (Note that this

result is consistent with the phugoid approxiamte modal response ratios
.developed in Chapter 5.) The increase in phugoid undamped natural fre-

quency and damping brought about by the u,& -4- be feedbacks causes a

corresponding increase in the du/dt and attitude responses to gusts.

That is, Eq. 7-22 indicates that making the speed response more rapid

must incidentally result in larger values of 0.

To avoid the phenomenon described here, an attitude loop is also

oidinarily used'when speed control is desired. This loop has, among

other things, the effect of favorably modifying the ratio of closed-loop

u and 9 gust numerators.

7.~ 1-DACK OF ANGLE OP AITJACIC TO W EN-VATOR

Angle of attack and its derivative are, in pirinciple, very desirable

feedbacks to the elevator. Considered as stability derivative augmenta-

tion, & -bee and m - be increase the magnitude of Mml and Mm = UoM

directly, which will increase the damping ratio and undamped natural

frequency, respectively. These features are indicated by the short-period

approximate factors

2()p - + Mq + mal.ented)

(7-25)
= -augmented

The phugoid approxinte factors do not contain an MI term, and V6 enters
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only in conjunction with Mu, so there will be little effect of these

feedbacks on the phugoid when Ma L 0.

The appropriate transfer function for the controlled element is

N8  Aw. s + 1 ) [S2 + +

e (s) Vu 0[gS, + 2tpaiPs + S2 [ + 2tspci-ps +"p (-k

and Fig. 7-15 illustrates the system suryey for the feedback of angle of

attack al.oie to the elevator. The close proximity of the complex zeros

to the phugoid poles implies very little angle of attack change in the

phugoid mode. This, of course, is an inference already well established

above and in Chapter 5. Under the condition of closed-loop operation,

the angle of attack motion in the phugoid mode will be suppressed to an
even greater extent than ,in the open-loop case, but otherwise this feed-

back does not appreciably alter the phugoid characteristics. The short-

period roots, on the other hand, are grealy affected by the feedback.

They are, seen to move xtapidly to a ve-iy large frequency' just as would

be expected from the approxii-te factors. In the idealized case extremely

high gains can give very heavy damping of ,the modified short period.

However, this is difficult to achieve -in the' i-actical case because of

servo and ,sensor Ing effects at the modi:fied short-period frequencies,

and because the high gains ould tend to drive the servo to its limits

for all.but the snllest inputs or distubafr:e.

To irprove 'the short-period i in:'p3 a.etLce lead equalization
is .added,. wth the result shown by thf. .system eurvy in F - 6.. Here

again the effec t of the, lehd at od.eraite psh id just as wouild be

predictpd by the ,hpproxilmite ,factors.

The angle of 'a'tt.ck system, when tightly closed, is simi ar to the
pitch atttudepilus rdte in Section 7.1. Thu6, both

systems stabi l!'o, . t~ttbude an& daip shor poriod, and the nature- of gain

compensation requ:1J'.crnts is s .imilar. However,,'the reference for orien-
tation stabilization ir quite di.ferent, beoing the g vector (or horizon)
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for pitch attitude and the relati. - wind for angle of attack. Consequently,

a substantial difference occurs, when vertical gust disturbances are

encountered. The angle of attack system rotates the craft into the new

re~ative wind direction, thereby tending to-p xnAitain the angle of attack

and load factor constant. In these same cireustances pitch Scttitude

control, a3 already mentioned, will resist any tendencies to rotate the

craft relative to inertial space. Also, the pitch attitude system has a

very beneficial effect on -phugoid stability, whereas the angle of attack

system, as noted above, has essentially none.

7.4~ TgDM.OS 0F NOfML ACMUSMLI0N TO VTHN ELVATOR

The favoicable effects on the short-p eriod characteristics of cx,&--t
are often difficult to achieve with practical controls because of sensing

problems. However, an alternative control system using a normal accel-,

erometer as the basic sensor has many similar features. A major component

in the normal acceleration signal is proportional to a-,agle of attack.

For instance, for y=0, and considering only short-period chatracteris-

tics, the acceleration at the c.g. is

azc~g. Uo 1- 7 +m ?'Zbebe (7-25)

Actually, it is seldom possible, even if desirable, to measure nornal

acceleration at the aircraft's center of gra'kity under all operational

loading distributions. A case of more. interert is the feedback of normal

acceleration measured in the plane of symmetry at some distance, Y,,, from

the center of gravity (xa is positive forward). The norma). acceleration

at this point ih

az =azeg -xq~Zc bb -X (7-26)

The frequency range over which the normal. acceleration and angle of

attack transfer functions are similar can be compared directly using the

short-period approxiimations. The three transfer functions of interest

*are azc~g/bc, az/be, and m/e These are
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short-period undamped natural frequency. This will also be true for the

az/6 e numerator breakpoints for any accelerometer location suitable for

control purposes. Below these breakpoints the acceleration transfer

functions becom e

s2 + 2t ' S 
o

Similarly, for frequencies less than 1./TM and the usual inequality,

Z8eMq/M,5eUo << 1, the angle of attack transfer function will be approxi-

mtely
& Ma lsl < 1 I (7-31)

e 's2 + 2 tspsps + 2 TS M

It is apparent, therefore, that for the frequency band defined by the

minimum of the several numerator breakpoints the acceleration and ahgle

of attack transfer functions are directly related by a proportionality

factor, az/ " - (Ze/Mfe)Im'; this can also be recognized from the

approximte 0/be factors as equ'.valent to -Uo (I/T 02 ).

To detenine the frequency -.ange over which the above siqle

proportionality appl-i.es, and to consider means to rake and keep this

frequency range reasonably large (and thereby Ietain the desirable

features of a feedback), we must now consider the magnitude of the

smllest numerator breakpoint. Of those that require consideration

(Eqs. 7-30, 7-31), 1/Tm is easily eliminated as being generally the

largest. That is,

1 UMOe• -cU° Cme •U1be(2-. (7-32)

which is of the order of, and varies directly with, airspeed and takes

the sign of 1b, (positive for aft control). Next, consider the numerator

terms for the acceleration at the c.g. When the point of control appli-

cation is aft (Mbe < 0), the constant term in the quadratic is negative

since in general fMbezc/Zbef > i . The numerator then consists of two
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* real roots which are nearly equal but of opposite sign (the negative

root is somewlat smraller in mrgnitude than the positive one because

their sum, which is -M&-Mq, is invariably positive). The magnitude of

these breakpoints is approx-lztel.y

SZ -33)
Th 3  Th2  

(7

When the longitudinal control is forward, the quadratic form does not

factor and its undamped natural frequency becomes

M h e"- (7-34+

For either the forward or aft el.eva'or the rnunenator breakpoint Ts greater

than owp, although seldom by a large factor. This relatively close

proximity lhas a profound. effect on control syste-ms using the c.g.-mounted

accleroineter. As -1l].ustrated in the system survey of Fig. 7-1 7, the az

Afeedback increases the sbort-perlod unar rped natural frequency, but the

riglt-h-mlf-plane zero, 1/Th, pulls the short-period roots into the right

half plane. As is apparent from the Bode root locus, much of the move-

ment of the short-period roots occurs with but a slight chiange in the

gain. For instance, only a tiny increm( eit in gein is needed to drive

the short period from a value where a' is about equal to 1/Th3 to the

negative real axis rendezvous and thence unstablc.

To extend the frequency range over which the az/a. correspondence

holds and, specifically, to alleviate the dcleterious effects asisociatc:d

with the nomidnimum phase numerator of the c.g.-.ocatd accelerometcr,

other locations are desinable. rom Eq. 7-28 it is apparent tlrmt,

including location effects,

Ma, -x 
Ze ,

-- ..
2-M

L ________________________________ ________________________________________________________ 
___________
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We see now that the numerator roots can be increased in magnitude by

locating the accelerometer so that the xa term subtracts from one. *For

an aft elevator control (le/Ze > 0) the appropriate xa is positive,

implying an accelerometer location ahead of the c.g. Up to a point the

change in location siMly moves the numerator breakpoints farther out

and away from the short-period breakpoint, thereby permitting a higher

gain without instability.

When the term involving xa is greater than one, the numerator becomes

a quadratic with an undamped natural frequency:

1 +Mbe

%z Z(e (7-36)

With further increase in Xa, %z is decreased and the numerator break-

point starts back toward the short period.

The detailed nature of the numerator root variations with the

accelerometer-position control-location parameter) xaMe/Ze, can be

explored by considering the general az numerator as an equivalent servo

system which has XaNle/Zbe as a gain. From Eqs. 7-27 and 7-28, the

numerator is given by

-=)c +a2 , , - 1e s

+b b xaM~s + Z we~ +~
-xr~ s + M8 ..Wz + -

Z)g. t] (7=37)e a
ee

Considering that usal].y I ,z*/IvIl << 1 and I (ze/Me) (M/Zw) I << 1,

then the zeros of NaZ(s) will be the zeros of (1 +G), where 0 is given

by
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, G %(8 - Z1)

or, with an aft control point,

G (-xaM ) 6(s - z(7-39)

Furthermore, -2  (UO/2 7) will invariably be

larger tlban one.

A survey of this equivalent servo system is showm in Fig. 7-18.

At low gains the accelerometer zeros (the poles of the equivalent servo

system) are near those for the e.g. location. As gain is increased.,

both the minimum and nonminimum phase zeros increase in magnitude until

kXaMe/Zel = 1. At this point the minimum phase zero emanating from

-1/Th3 has gone to -, but the nonminimum phase zero (from -1/Th 2 ) is

still finite. For values of gain just slightly greater than one the

minimum phase zero has gone through minus infinity and has become a very

large positive number; and as gain is firther slightly increased this

zero and the nonminimum phase zero rendezvous to form a high frequency

quadratic pair.* The undalmped natiral frequency of this pair initially

decreases rapidly as gain is furicher increased, and then more gradually

as the zeros proceed down- the 40 db/decade Bode root locus asymptote

between -4 and -1/Th2.

From the features just described, the most appropriate location for

the accelerometer in the sense that the numnerator breakpoints are as far

removed from asp as possible corresponds to locations where J Xa"e/Z"eI

is zj .ar one. When this is exctly the case, the coefficient of the S2

xThis rendezvous point-can occur in either the right half or left
half plane, depending on the sign of (M&+Mq-Z7). For an aft elevator
and (i; +M4q-7 .) > 0 the rendezvous point is in the left half plino; for
(M6+I Mq-7?) < 0 it is in the right half plne.
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term in the az/e numerator is zero and the transfer function becomes

5e Z er e . Z ( i M ~ ) [ e ~ ~ ) (7 -4 o )

ASP

The location Xa = Zbe/e corresponds to an "instantaneous ceiter of

rotation" for which the center of pressure of the aerodynmic load due

to deflecting the control surface is a "center.of.percussion." At the
instantaneous center of rotation a step function. elevator input will.

produce an initial vertical acceleration due to Zeke which .is. just

balanced by that due to pitching acceleration, -x4. (Most readers will

recall that the tradezrark on a baseball bat is at the center of percus-

sion, and that the impulse on the bat when the ball is hit at this point

does not result in trans]ational forces on the batter's hands, i.e., the

handle is the center of rotation.) This particular location is, of course,

ideal for. accelero-meter control systems. In practice, however, the

effective center of rotation shifts because of c.g. and effective control

arm changes so that a location in its general neighborhood is the best

that can norinally be expected.

In all of the above discussion the accelerometer System has been

considered as a replacement for systems involving angle of attack. The

analogy can be carried further; for instance, an az signal can be used

to incre.se the short-period daikping, effectively augenting 1 . The

major difference, then, between a good az system and an M system, other

than those dwelt on at length above, is in the controller gain variation

required for any reasonable control. This is generally quite extreme

for accelerometer systems intended to perform angle of attack stabiliza-

tion functions. More specifically, in an angle of attack controller for

which a pure gain might be suitable, the az gain would have to vary

inversely as pU2 .

For control in the range of phugoid frequencies, the properties of

a normal. acceleration control are considerably different from those of

an angle of attack system. This can perhaps best be appreciated by
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comqparing the system survey of Fig. 7-19, whieh shows an az -a-be system,

with the angle of attack control for the same airplane illustrated in

Fig. 7-15. Unlike the angle of attack system, the normal acceleration

control can have a significant effect on the phugoid. In this case the

major effect is a reduction in the phugoid undamped natural frequency,

However, for flight c6nditions which exhibit a performance reversal, i.e.,

1/Thl negative, this zero will appear in the right half plane and a

normal acceleration system without washout will tend to drive the phugoid

unstable.

i 7. 3~DFM kC OF ALTITUDE TO, THE ELEVATOR

The altitude is an important and very physical motion quantity which

must often be controlle& accurately. In the linearized equations for

sll perturbations from straight, level, and horizontal flight, the alti-

tude is proportional to the double int-egral of the nonral acceleration at

the e.g.,

h = Uof7dt = -Uoffazc dt dt (7-4.1)

and the altitude-to-elevator transfer function is given by

s*: 2 + h hs + 2

or

Ah(s + + T +

h(s) h hi T2; 'h5
" B e - -- --- (7-42 )be(s) -long + 2 + 2,pv + 2 )(s2 + 2  pra -p 2

Just as in the aZc.g. acceleration system discussed in the Rusit article,

the numerator quadratic or two first-orders correspond to fort.rard and

aft elevator contro)., respectively. Because of the free s-, the feed.back

of altitude by itself drives the modified phugoid roots into the right

half plane at very low values of gain (see Fig. 7-20). Consequently,

some form of equalization is required to rrake an effective altitude
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control. An inner attitude loop to damp the phugoid is one such

possibility. Since this constitutes a multiloop system, its considera-

tion is deferred until Chapter 11. Confining our attention here to

single-loop or effective single-loop controllers, the appropriate

equalization is a lead on the altitude error. Practically; this might

be accomplished by rate equalization in series or by the use of an

altitude rate or rate of climb signal. In any event, the inverse of the

lead time constant, 1&/T, is adjusted to lie between the phugoid and

short-period breakpoints. A system survey indicating the efficacy of

this technique is shown in Fig. 7-21.

A major problem with altitude control is encountered for performance

reversal situations where 1/Thl becomes negative. As discussed at lefigth

in Chapter 5, 1/Thl is approxinated by

1_ .
Thl m \do oU/

It will change sign whenever the airplane is on the "backside" of the

thrust-required versus speed curve. This is a common situation on very

low speed approaches (e.g., carrier approaches), steep climbs, and other

flight conditions where flight at near-rnimum drag is desirable. When

this performance reversal occurs, an altitude loop will drive the pole

at the origin into the right half plane toward 1/ThI . The result is a

divergent instability at any value of closed-loop gain. In principle,

the performance reversal point could be detected and the sign of the

gain changed to avoid divergence, but this would also change the root

locus departure from the phugoid roots by 1800, thereby tending to drive

the phugoid unstable at very low values of gain. Consequently, even in

principle such a change is Jn'pmctical. The conclusion to be drawn from

these considerations is that altitude control using the elevator alone

cannot be achieved for flight conditions in which the performance reversal

exists. 'An additional control deflection (other than the elevator) must

be added.

A similar conclusion on the same basis can be drawn for rate of

climb systems. However, there are many situations in which a specific

-14'l.
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value of rate of climb is not the basic requirement; rather, it is desired

that nearly best nite of climb as a function of altitude be naintained.

Under these conditions the use of airspeed-4.ike feedbacks to control

either indicated airspeed or Itlch riumber to va.ues approximating those

for best-cljnb Is mowt.apriprpriate. Such feedback systems do not suffer

from perfornance revers.,I. p'roblein: and, further., they do not require

com-and schedul:l.rig co..n t1cw 1-..th aw.:.3nhble flight perforance as a

function Of' alititnde.
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The usefulness of studyIng feedback loops closed around the various

transfer functions of aircraft is exactly the same in the case of lateral

motions as it is for longitudinal. Idealized systems still serve to shoir

the ultimte perfoinance which practical systems can approach or, on the

other hand, tend to show which feecdbacks are unlikely to prove useful.

A general block diagram for the cases of lateral motion quantity

feedback is identical to the one for longitudinal motion quantity feed-

back (see Fig. 7-I). Again it will be sufficient, in most instances, to

consider that the controller is simply a: galn, although in some cases

simple forms of compensation or equalization my be provided to improve

the porformnce of the feedback control loop.

The main lateral motion output quantities which have been controlled

directly, and the actuating quantities for the lateral motions of aircraft,

are surnarized in Table 8-1. Because there are so many possible combina-

tions, only the more useful and/or instructive of these will be described

in this chapter.

8.1 FSEDPACK OF V.K ANGTA' AM IOLTV:CRiG VY-YMOITY O0 Tim" AITMROns

The first successful aircraft automatic pilots employed the same

vertical 'gyroscope which sensed the pitching motions to detect departures

from a wings-level attitude and to cause the ailerons to move so as to

oppose the bank angle. This action can be thought of as negative feed-

back of the bank angle motion variable to the aileron actuating quantity.

The appropriate transfer function for the controlled element is

cp ~1s) A 042 + 2top .)s + ~ 8i

8-I + k)[ + 2 teda +

8-1



t TABLE 8-1

IATEML MOTION AIRDMA14E OUTPUT AND ACTUATING QUAINTITIM

UTPUT QUAN.ITIF ACTUATING QUANTITIES

q;, bank angle ba, aileron deflection

p, rolling velocity 5r, rudder deflection

r, yawing velocity

j, heading angle

p, sideslip angle, v/Uo

ay, side acceleration,
+ a

Typically, in cruising flight the spizlf tir~e constant is very large and

the mode itself can be either neutrally stable, or a slow convergence, or

a slight divergence. Both the ncutrall and the unstable conditions are

undesirable for unattended operation, and the. slow convergence is little

better. Consequently, one purpose of an automa-tic pilot is to impose a

higher degree of spiral stability. With roll attitude control this is

achieved by the creation of static stability in roll. Directly associ-

ated with the inprovement in spiral mode stability with this kind cf

system is the provision of bank angle stab:ility and a tendency to min-

tai roll attitude orientation in the presence of aircraft disturbances.

Finally, the bank angle system perir.ts the imposition of roll commnands on

the aircraft. In the discussion below several aspects of roll attitude

and rolling veloclty control will be considered for a variety of aircraft

configurations which correspond to several degrees of control. difficulty.

Convcntiona. Ro.l Att'ltude Control

Figure 8-1 displays the feedback system analysis for the bank-angle-

to-aileron closure (q) -- a) for an aircraft with good rolling character-

istics. The a-Bode diagain (shom for both porsitive and negative va.ues)

8-2
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indicates that at a gain greater than IK °qta 1 the spiral motion is

made stable. For the vehicle dynamics presumed here this loop my, in

fact, be closed with much higher gains without the danger of instability.

While the dutch roll mode in this airplane is weakly damped, the

close proximity of the numerator zeros to the dutch roll poles implies

that there will be very little excitation of this mode in response to

aileron inputs. (However, the dutch roll mode will still be excited by

rudder or gust inputs.) As far as the regulation of bank angle and the

ability to follow bank angle commands are concerned, this system would be

eminently satisfactory when the loop is closed with the typical zero db

line location shown.

Control of the bank angle of a hovering VTOL aircraft, or helicopter,

by means of feedback to the rollimg moment control is the analog of pitch

angle control for this type of vehicle (see Section 7.1, Eq. 7-8, ai&

Fig. 7-10). The equations of motion and transfer functions have the same

fonm and, except for changes in the numerical values of the stability

derivatives or transfer function factors, theZI are appropriate for the

description of either longitudinal or lateral motions at hover and at very

low forviard speeds. Figure 7-10 therefore can be considered to be equally

as good an analysis of the bank-angle-to-rclling-moment control of a

hovering helicopter as it is of pitch-angle-to-pitching-moment control.

Nature of Gain Adjustments fox Convent'Lon. Roll Attitude Contro.

To mrintain these satisfactory closed-loop Orracteristics over a

broad regime of flight conditions may require changes in the controller

gain to accoimnodate changes in the conditions of flight. Some appredia-

tion for the nature of appropriate gain variations can be obtained by

considering roll control. of a much simplified airplane. If we assume

that 1/T1 >> I/Ts. and that the dutch roll mode is exactly canceled by

the nvaerator quadratic, then the pure-gain roll control system has an

open-loop transfer function given by

._P -._.~ a (8-2)
qPe r~ +~-
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The open- and cl:,scd-loop characteristics of this system are shown inFig. 8-2.

The closed-loop roots for this system are defined by

' ' 1' (8-3)

CbsiR -V

The closed-loop damping ratio is therefot

~SR1

The controller gain required to obtain a specific closed-loop damping

ratio (or, equival.ently, a specific phase margin) is then

t2

-a(2t )2 - ., 2 ,
kRT R I~( 8 -6 )

pSb3  (CP)
2

32 2 Ix 2 Cla

The ratio (Clp)2/CLba is reasonably constant at subsonic conditions, but

is a function of Yach niumber in the transonic and supersonic regimes.

To the extent that (Clp) 2 /Cla is approximately constant, an appropriate

variation for ip to maintain constant closed-loop damping ratio and plase

margin would be

K 0 p (8-7)

With constant phase mrgin, it is clear from Fig. 8-2 that

(8-8)

or that the variation of the crossover frequency with flight enviromfental

parameters will be

8-5
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o~pU0  (8-9)

If the desire is to keep the closed-loop undamped natural frequency,

oR, constant, a somewhat more drastic rin variation is required. From

Eq. 8-4 it follows that K9 must vary inversely with I*, or in terms of

flight environmental parameters

K4) c (8-10)

Controller gain variation between the two extremes of Eqs. 8-7 and 8-10

results in a compromise between constant closed-loop damping ratto, tSR)

and constant undamped natural frequency, .R.

Rofl Attitude Control with Rolla/Ywa CouLinS

One facet of the good lateral control behavior exhibited by tw.

aircraft considered above is the near absence of the dutch roll mode in

rolling motions. In fact, the significant roll dynamics could have been

treated albost as well using the three-degree-of-freedom spiral. roll sub-

sidence approxinntions in Chapter 6 in uhich neither rnun rator nor denoni-

nator quadratics appear. When the quadratic niunrerator in the W/ a txansfer

function does not approximately cancel the dutch roll. denominator, the

mgnitude of the dutch ro.. component in rolling motions becomes more

significant and Pay in certain conditions lead-to serious control'>prob-

lems. In the context of the simplified case this change amounts to the

multiplication of the simplified transfer function by a ratio of

quadratics.

The possible relative orientations of the quadratic pol.e/zero can

best be developed by considering the simplified approxiiinte factors

N~aN

2oje : -(Yv + ,)-
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Great efforts are ordinarily made in the basic airframe design to keep

I/, negative. To the extent that these succeed, aou/ will be less

' than one for adverse aileron yaw (Na/Ija < 0) and greater than one for

so-called favorable aileron yai (Na/I4> 0). The differeice in the

damping terms depends zrainly on the sign of (iv - g/Us). on most aircraft

each. s: [m occurs someaihere in the flight regime, so the relative magnitudes

of t and Cda)a alternate. In general, however, the mgnitude of

will be roughly that of tdcaU, except for those cases where td becomes

negative since t is invariably positive. Finally, the relative location

of 1/T R and a affects the roll attitude system closure charucteristics.

Thus, the following natrix of possible conditions is of interest:

Case (Vu 1/Tilau

1 <1 >1

2 >1 >1

<1 <1

4 >1 <1

These various cases are illustrated in the G(Jcu) Bode plots of

Fig. 8-3. These plots arc drawn with t and td equal, and use phase

asyrlfptotes to emphasize the phase blip due to the quadratic pair.

Examirkation of Fig. 8-3 reveals that Cases 2 and 4 Miy become

unstable for values of gain where the zero-db-].inc/amplitude-ratio

intersection is in the region of the sharp dip in phase. The phase dip

must, of course, take the phase angle to values grcatcr than 1800 for

such an instability to occur. The magnitude of the dip depends on the

values of tT, td, and the ok/a ratio; and in many ciruistances the'

total maximuin phase dip is not sfTicient to reach -180o. For example,

in aircraft with large values of dutch roll damping, both t, and td are

fairly large and the phase dip is therefore snall. Such craft are seldom

affected by an imstable condition of this nature. The surest way to avoid

the phase dip of Cases 2 and '4 is, of course, to have 0.1 < (L , correspond-

ing to Cases 1 and 3. These latter cases, for~the iTm.njmim-phase airframe

conditions shown in Fig. 8-3 and the ideal. ensor and iservo chanacteris-

tics assiuied. here, cannot become ui,)nsta at ary value of'• -

8-8
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Root locus dlagrams for the four cases are shown in Mig. 8-4. In

all cases the closed-loop spiral and roll subsidence roots proceed toward

each other, couple, and break off from the real axis. This behavior is

similar to that of the well-behaved aircraft situation, being precisely

the sare for lov gains. A divergent spiral does not change this picture

appreciably, although there ii; a minimum value of gain required for

stability. Also, the direct corielation between the phase dip and the

entry and subsequent exit of the closed-loop dutch roll mode from the

right half plane is aplprent.

The behavior of the spiral/rol.-subsidence coupled pair after

breakoff, and that of the modified dutch roll roots, is most interesting

and varied. One of these pairs must go to the roll numerator at high'

gait, w:hile the other proceeds toward the high gain asyniptotes. Which

pair goes where is the basis for further classification - in Subcase A

the dutch roll poles go into. the roll numerator pair, while the coupled

spiral/roll-subsid r.-ce mode goes to the asymL tote; Subcase B i. the

opposite of Subcase A. Whether a particular pole/zero configuration fits

into a specific category depends primorily on the relative location of

the root, especially that of the dutch roll and of the roll numerator.

When ,J l = l and N/cq is near unity (Cases 1A and lfA), the infinite

gain dutch roll characteristics are those of the roll numerator. As N/ca

decreases (Cases 1B and 3) or t and tdwtd become separated in value

(Cases 1B modified and 4B), the coupled spiz,./roll-subsidence roots drive

into the zeros. In either case the high gain characteristic of the

closed-loop tra.sfer function, q)/q), is bisicaiy similar, since one

or the other of the denominator patirs will. approximately cancel the zeros.

The net result for the high gain values of G/(I + G) will then be

2
G_'. LtL -(8-12)1 + N:g h  s2 +,2CLL +-CLA~i

The value of tCLb- for high gain approaches the negat:.ve of the high

ga.n root locus asyuitote, i.e.,

S-.. = ( - . ) . - (8-1 3)
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Of all the varied airfit:::e forfoas con.idered in Figs. 8-3 and 8-4.,

a "preferred," or most desirable, condition will usually be Case 1A.

This would be nearly ideal whcn t is large enough to satisfy dutch roll

damping requirements -for then the roll loop can be mde high gain, and

will have a response to co:rnds which is essentially second-order in

c1axacter.

In a practical control with actuator and sensor lags, the unstable

conditions duo to the phase dip cannot ordinarily be overcome by raismg.

the gain to force the dutch roll poles into the aV zeros. Instead, more

elaborate means of compensation must be sought. These typ'-cally involve

the use of the rudder either to provide damping for the dutch roll, or the

use of a crossfeed from the aileron to alter the apparent aileron yawing

moment cha-acteri'stics. The analysis of this inmortant examJle ofra

separate loop closure as a means of compensation is deferred until

Chapter 12.

Roll Attitude Control- with DaiLetont toll ari.tng

In nry practical situations a roll control system .based on only roll

angle feedback is inadeqcate from the standpoint of tightness of control

in response to disturbances and commands. This deficiency can be traced

back, fundamentally, to the fact that with pure roll attitude feedback

the open-loop and closed-loop total effective dcampings are the Same. To

improve this sittuation the order of the open-loop transfer function numer-

ator must be rade no less than one below that of the denominator. Then,

when the quantity 1 + G is formed and. divided through by the coefficient

of the highest order s term, the secord highest order s term (which repre-

sents the total system damping or the su of all the roots) will be a

function of open-loop gain. The damping factors Of the various closed-loop

modes can then be considerably increased., with attendant reduction in

response timo and increase in system tightness.

To accoipplish this incrcase in relative numenator/denominator order

in the --- 6a roll control system, the controller transfer function is

changed from Kq) to Kq)(1 + Tqs). From the mechanization standpoint this

introduction of lead equa.lization can be obtained in sevexa.l ways, all

8- 2



add~.ng lags at; high fr(7qucei-cy. TheSCe ags will. be ignored here because

they are no morc imporUkmt; to the discussion at hand than sensor or servo

lags. Also, thbe lead call be introdued in eithler the feedback or forward

loops, although it is usually irnser~ced in the feedback path. In this woy

the closcd-loop system characteristics at hitgh gain can be Lsace to approach

Cpc, - 1 /(Tqsr +j 1) To the extenlt that high gain can be rainitained

througholrL the flight rogive, this provides constant closed-loop system

dynami~cs in resp-Lonse to co~rarnds. Although such considerations are

important in conneoction with cp, inputs, the ijor interest in ithat follows

is on the effective vehicle dynamics which are independent of input, i.e.,

on the closed-loop modens defined by 1 +G(s) = 0.

In maost respects the signficant changes in lIe- caateitc

due to the addition of lead in the controller. i.e.,

ba (Kcjs + Kq)qg Kcjs+/Te~

can be treated using the thc-dgc-~re~mspiraJ./roU.- subsidence

approxinntion. The open-loop transfer funiction will. then be

Since the roll subsiJdence is always greater than the spiral moot, the

simplified system characteristics will be strongly depo-ndent onl the

relative location of 1 /T.P and 1 /T R. The two possible cases (exelucl-ng;

the trivial one when 1 /Tcp = 1 /Tp,) are shown~ *in Figs. 8-5 and 8-6. When

1 /Tcp > 1 /T.R (F ig. 8-5) the low gain closed.,loop roots are similar to

those for the sinile roll case (wh:11ch is a limi4ting condition cor-reopond-

ilia to 1 /T.cp With an increase in gain the modified spire 1 and roll

subsidence approacl one another until the zero db line reaches the broak-

away point, mo'j. At higher gains the roobs become complex. At still..

higher gains the presence of 1 /Tqp becomes a more emphatic fctor in the

chara cter of the system. For the zero db line at the rendezvous poInt,

c On or l1owe(iher gainms) , the tlwo oscillatoxy roots bfwrc returned to
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the real -axis-- o o: intohe the 'her jiicreases (,cgat:;ely)

with increased gain. Tie comiplex bimneh f0rom Iba to 0 ba 2 i., of course,

a perfect circle contered at -1/T on the conventional root .ocus.

In Fig,. 8-6 the presence of the zero, --I/, betecii the - anl

-I/Tjj poles l.cads to a system uhich exhibits consideab.e differences

from the q)-r- a case. iTe behavior of the closed-loop roots as gain is

increased is stm.gf'orard-thc volified spiral goes to the .ead term,

1/T , and the modified. roll. subsidence approaches the high frequency

asymptote.

Different as the plots of Figs. 8-5 and 8-6 appear, they indicate

very similar system behavior at low values of gain. At very high gains

the results shown are also similar. Only at intermediate gains is the

behavior of the two basically different.

~IG(-o-)1 b
.0
0

IG(-II-- dbCLa:u

E

0- (log scOle)

Fig. 8--6. BJnd1 G(--o') I):iagi'r, of Poll Attitude and Roll Rate
(cpA - -- ) Control. SyrOtem for 1/9t < 'l/Tcp < 1/Ti'R
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One of the simplest stability auLml.entation systems inaginable is

tho feedback of rolling velocity to aileron "(p -b a). This system is

seldom" used as a comrand controller, i.e., there is no pc command.

Instead, its fuxiction is to aug e1t the roll damping derivative L!. This

nay be desirable for one or more of several reason-. One was discussed

in the last article, where the 4 -- 8a component of the q,)- -b a system

was used to improve the response of a roll comniand system. Other reasons

will be described below, using the cquivalent stability derivative approach

and approximiate factors.

When the aileron deflection is nade proportional to rolling velocity,
i.e., Kp(-)

, a = -KpP

the effect on the roots of the closed-loop system is the same as those

which would be caused by changing the stability derivative to I'augu

where
-Pu KPl ia (8-16)

Taug 11b

if Y* and Na ore nEglected. The direct effect of this action is to

increase the roll subsidence break frequency. expressed by the approxi-

mate factor

T + - (8-17)

This may be desirable to improve the handling qn a.ities in nunal control

or, as treaed above, to allow a tighter rol 1 attitude loop closure in

autoiratic control.

An increase in 1/TA can also improve the aircraft response to rolling

gusts. For instance, using the simplif:ted airplane cqu o tions.with

1/T5 " 0, the rolling response to a rolling velocity gust, p., will be

descr:ibed approximately by the transfer function

8-16



S .(8-18

In this relationship the la0. frequency gain is changed from approximately

unity (-J4)TR) for the airplme-alone condition to "'/'aug with augmentation.

Both the matio of rolling and sides).ipping amplitudcs-n the dutch

roll mode and the roll response to a Pg gust input are measured. by the

ratio of p and A modal response coefficients for the dutch roll mode. As

developed in Chapter 6, this is given for the airplane-alone by the

approxirate expression

___1 
(8-19)d ILa + '2jj

if the dutch roll damping ratio is fairly s.rall. Tbking account of the

:augmentation by replacing IL, vith L in Eq. 8-19 indicates that d/f3Ia

can be reduced substantially by a roll damper if -u/I 1; otherwaugI se

the effect of augmentation on lp/pld will be nmnor.

Finally, the use of a roll damper to improve effectiLve a rframe

numerator characteristics for outer loop equa].iz.tion must not be over-

looked, although it is beyond the scope of this chapter.

8 .P e , : u ', t .; O eP O X ', "TT 5 ..-,., , X

Bank angle and rolling velocity are the ,primary feedbachs in siing].-

loop roll. control systems. They are general].y effective and are ahinost

always present in auto.mt-ic flight control systems. In addition to q

and/or p. other quantities have from time to time been used as feedbacks

to the ailerons. The most com-mon are lateral deviat:on and heading, as

d.ght be obtained from a localizer or otber lateral guidance device and

a directional gyro. Neither of these is generally suitable for direct

feedback to the ailerzons without extensive equ(lization. This is

A
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nornm]a.y suppj.ed by virtue of inner attitude loop-, so the feedback of

these quantities, in practice, constitutes a wultiple-loop situation and
thus is a subject for Chapter 12.

Quantities other thzan bank angle and rolling velocity hve been used

occasionally in simle-loop aileron control systems. These include feed-

backs of yawing velocity (r -- ba), sideslip (f -- & ), and lateral

acceleration (ay -3- ba). On particular craft each of these has been made

to serve some useful purpose, but their success has invariably been

dependent on the existence of favorable vehicle chaz-acteristics which are

by no means universally prcsent. The favorable c-harxacteristics are

exhibited in the transfer function numrators and, as already rermarked in

Chapter 6, such numeiatorb as I," (s) are -rvericks of the worse sort in

that their basic characteristics differ not only between different air-

craft, but even vwithin a single Vehicle at different flight regimes.

Consequently, a thorough discussion of such single-loop feedbackC would
have to cover a very large number of mostly unwuitablc conditions. To

avoid this me shall confine our attention here to the low gain behavior

of such loops, thereby peritting us to use approxiimato factors and
equivalent stability derivatives as the basis for the discussion. Most

of the interesting features and deficiencies of P3, r, ana ay feedbacks

to aileron can be treated in this way in fairly gcneral terms.

Feedback of Siderlip to the Aicrons

The feedback of sideslip angle to the ailerons modifies the stability
derivatives LP and NP as follows:

fbaug

For most aircraft with reasonab.y large directI.ona.. wreathercock stability

the principal effect w.i.l be on IalZ and in this sense the feedback of

sideslip angle is analogous to changing the dihedral of the airplanc. A
very modest amount of this fecdba.ck is sufficient to stabil.ize an unstable

spiral motion; that i , with Kp positive,, the magnitude of V, can
8aug



easily be i,cr.ased such tit

]I' - r > 0 (8-21)

Unfortnate:Ly, at the ssmo t ri.e thi.' fcedbaic .iay sign:ficarntly decrease

the da ,iU..g of the dutch roll. mude w :c-.vcr (V - g/uo) is ncgative, as

s0.. by the aproxiiiate factor
' I'

2t. i . -P~~ (8-22)

Sideslip-to-aileron feedbacks have also been proposed as a means to

decrease the effective dihcdral and thereby the dutch roll. modal response

Intio 'I /PId" This requires a negative KP, and, all of the effects noted

above are simply reversed. To achieve significant reduction in the
effective I .AI over a reasonabJe mnge of inputs, the gain, Kp, and the

aileron authority musL be fairly large. Further, the degree of spiral

instability must be limited. This is automtically accoipllished if the

--,/Acl zeros are such that one of them is negative and slightly larger in

magnitude than the spir al, thereby providing a zero for the spiral to

approach. UnforLunatc)y, this nu.erator has a basic dependence on such

variable stability derivatives as Na d ( - g/Uo), so the :ero loca-

tions can shift drastically with flight cond:.t'ion. Other means to cope

Nrith the spiral exist, but most require additional feedbacks and so are

beyond our present scope.

We can conclude from the above that F - -a systems cai) provide

some good featur.es, but that these are usually accompanied by deleterious

side ef.fects. The disadv ia .s often out,,eciIgh the advantages, so such

systems are seldom used, except in the most ;peci al of circumstances.

Feab c,.: o:?T ;.6. ficcle,t.o ,!,, to th ' .,;'o :

The feedback of side acce3.eration, ayc.g to the ailerons is often

pXaw]ically equivalent to the feedback of side velocity. This follows

from the rlation h:p
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ay... = * ib + Yar br + YO, + Yer + Yvv (8-23)

where the termis Yb, YP, anrd Yr are negligible so that

ayc.g. " Ybrbr + Yvv (8-24)

Then, overlooking for the mom :t the possible effect of rndder deflec-

tions, there rerains only the very natch simplified fonriula

V cc.(8-25)
v = CYV.,

Yv

Consequently, as a single-loop control the lateiml accelerometer will
share most of the characteristics of P z v/Uo - 8 systems. (Si,]ar

to the correspomndence -bet.een a z and cc in the longitudinal control..)

In solvme automatic pilots the connection between side acceleration

and side velocity has been used as the basis for a coordination control

in which the ailerons are driven so as to nu.1 a side acceleration

signal. While this rmay seem contja ry to the custo.mraxy use of the redder

as the coordina tion control, it has been nade to vork as part of a mlti-

loop automatic flight control system on aircraft with characteristics

favorable to this type o. coordination device.

Fe cck of :. wlng Ve .oi.ty to the Ailerons

fn r -- 8 fcedback system corresponds to the alteration of the
airplane stability derilvative L'. This can be an c:f-ective means of

stabilix~ng the spir.-al;dc by iaking J'aug sufficiently negative

(Kr poitivc) thlt

I V - > 6 (8-26)

If the aileron ycoa is ftvortbl, e (N&, poci.tjive). then this feedback will

also tend to incre4ase the n'.gnitrck of NT& . This wI.. mke the left

side of the In"nouo.lity stilll lartger vnd wil.. incidentally improve the

dutch roll dami.r'g. On the other hand, for the more co, ron adverse yaw

(NAa negative) the r - ystem g.in cannot be racic very lncrgc without

Imak:i ng the o 1.d du(bc:h ro .1 osciJJ 1  .o0?., ab3 o,
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There have bu,. t soi:r pro:)osud rutorat:ic pilot configuintions which

used the properltes r -A-8j feedb-ack to advantage. These are especially

effective when a tilted rate gyro can be satisfactorily einploycd. 'This

will sense a combinva;ion of rolling and yawing velocity, and when this

sigral is used to actuate the ailrons the damping in roll and spiral

stability are simultaneously improved. For more detailed studies of this

type of system the airp.nle ]ateral-velocity-to-aileron transfer function,

c/ba, should be used. In fact, this is generally neces.ry in pra.ctice,

for *.he angular velocity is sensed by a-rate gyro which is fixed to the

vehicle. Because the gyro input axis does not vary with flight condi-

tion, while the vehicle's stability axes do, the I-aneral angular veloc cy

sensed will noL alx:rays coincide with Yawing ve].ocity.

8.3,, l)33-inOa'I~?G taxa 1- TO -,-

The earliest auto, ntic pilots e.)loyed a fecdback of heading angle

to the rudder as a means of steering the airplane. For sral-.]], perturba-

tions about straight, level, and horizontal flight the appropriate trans-

fer function fcr the study of this as an eleirontary feedback control, system
is

r( s A r s + F r ) .,r+ 2 r D l(r A+ (8-27)
Br(S) S~2at s~s + 0s i A)V2 + 2 dads +

Figure 8-7 presents a system survey of this system for a typical case.

This survey indicates that the feedback of heading to rudder stabilizes

the divergent spiral motion by forcing it to combine with the pole at

the origin. At a comparati.vely high value of the feedback gain the

resulting low frequency oscillation is rnade stable, while at the same

time the damping of the dutch roll node is only slightly altered. Consqe-

quently, this type of system can be a very satisfactory directior,.al

stabilizer for aircraft with heavy dutch roll damping.

In the absence of actuator lags there is no danger of instability at

high frequencl.cs, although the dutch roll undampld natural frequency

becomes much greater as the fecdback gain is increased. However, for the
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tfor the -co.ex v±uros of the transfer function,tnTical loc-ationu shcun fo he ,1,

the dondrantdC closedI-loop li-ing mmde ftL,,') can never become very

mitisfactorily .arped because the tr, a . zeros are themselves rather

close to the i:,ngi.-nary axis. In fact, it is not at all unco.mamon for

these zeros to be in the right half plane during some phMse of flight.

(This will be treatCd -in more det-ail in the discussion of the r -°-6 r

system given below.) To avoid the light or negative closed-loop dan-ping

accompanying a high gain closure, the gain is generally bmde fairly low.

The closcd-loop bandwidth of the sys-tem is, therefore, also bound to

rem.in low. Some inpr,rovement in these deficiencies can be obtained by a

combination of baink angle and heading angle feedback to the rudder, and

a tilted directional gyroscope can provide a suitable signal.. The first

British automatic pilot was mechlanized in this way.*

In a nuwiber of modern airolane auto.atic pilots the rudder axis,

instead of being slaved to a direction-sensing instrument, is act-Lted

by a rate gyro which senses yawing velocity. This is particularly vl.u-

able in those aircraft which need dutch roll. dampibg augmentation.

Assuming that the yawing velocity sensor's input axis coincides approxi-

mately with the aircraft's stability axest the tzansfer function relating

yaw rate to redder has the same numerator and denominator factors as that

given in Eq. 8.-2' relating heading to rudder deflection, except for the

free s, i.e.,

rr s + 7_1-
r(s) Na - Ar ,1+ (8-28)

AJlat 1) ( 1) 1. S2 + 2 dcqs +a

.Y'F. W. Meredith and P. A. Cooke, "Aeroplan- Stability and the Auto-
ntic Pilot," J. Roral Aeron. Soci.ety, Vol. XI, No. 318, June 1937,
pp]. k15 -h56.

tin practice the (n/Sr transfer function should be used to take into

account sensor tilt angl.es wh:Ich invariably exist. Alternatively, the
transfonr.ation bctwcer instrumnt axes and boay-fixcd axes can be treated

Is " yult:loop problem in which both r and p are fed bach.

4.



Spiral anxl Dutch Roll~m blitztl-c ith <~c < I

Figure 8-8 presents the system amnlysis for an r - -r fcedback

around the trapsfer f unction of Eq. 8-28. The aircraft characteristics

are typical: for a high-aspeet-.ratio straight wing aircraft at cruif-ing

speed and altitude.

The particu]ar dynamics of this airplane and flight condition

illustrate the powerful effect of yaw rate feedtack on the lateral

motions of the airplane. At a very low value of the feedback gin the

spiral divergence is rrade stable, and at higher gains the very weakly

damped dutch roll motion is made heavily damped. In fact, as the figure

shows, in this idealized system it 4 s not difficult to provide nearly

critical damping for the closed-loop dutch roll roots. If 1/Tr and 1/TR

were somewhat closer together, as commonly occurs, all the roots could

be jinde negative and real.

Washed-Ouib Yaxtn.?g VeX ,ty to the Eudd.C

In turning flight a straight-through feedback opposes the turn,

requiring an incremen L of rudler or aileron into the turn to compensate

for the action of the feedback system. Any necessity for supplying this

incremient of control. has been fou2d to be macceptable on highly naneuver-

able craft. A "washout" is therefore usually installcd in the feedback

loop. This device has the property of having no output at d.c. so that

the feedback no longer opposes a steady tun. (in some so-called single-

axis automtic pilots which consist of a yaw rate feedback to the rudder,

it is precisely the fact that they & oppose the almost steady turn of .a

developing spiral instabil.ity which is considered valuabl.c. These devices

are designed, ther f'orc, without the washout feati'e.)

The transfer function of a washout has the form

SoT -
(8-29)

and the sLep function response of a washout is shovn in Fig. 8-9. The8-211
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device gets its name from the fact that the step function response decays
i or is wats),ed out.

I- / ------ Two
t-- [ ..o ".

Fig. 8-9. Step FoRncLion Response of a Washout

A system survey of the washed-out yaw-rate-to-rudder system is shown

in Fig. 8-10. To inimize the oppositibn of sitexady turns it is desirable

to choose the inverse washout tiae constanU. 1/TA:o as large as can be

wLthout detc li.g too much from the dutch roll damtping. There is a

direct tradeoff bet-recn these two desires in that the larger the inverse

Iardshout tiD.e constunt becomes, the siral].er V.1 11" be th6 rnmximum obtain)bl.e

val.ue of the damping ratio of the modified dutch rol.). mode. This fact ius

ill.us'trated by the sensitivity vectors on the root loci of the system

survey shoavn in Fig. 8-11 , which also serves as the basis of discussion

in the neCXt article.

A less favorable configuration of the open-loop pol.es and zeros than

those il.l.usitrated in Figs. 8-8 and 8-10 is easily possiblc. This is ill.us-

trated in Fig. 8-11, which is drawn fov the dynmoaics of a jet inerceplor

operating at high lift coef.1'i.cient. In this case the quadratic zeros

(0.r o ) are much closer to the dut.ch rol.l poles and the feedback of yaw

rate to the rudder is of strictly l.imited effectiveness in dar.ping the

lutch roll.. urt-,her, the sensitivity vector Suk, clearly indicatesd"that

still cl.oser .a spacings will be even more umdesir-abl.e.

Al.though the 1% nmerator is another nmveick, it is instruct.vc

to consider two limiting :as, *. These are:
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~ :t JTU~LdU; A)nt ogU)L I > I i~I

2Ly~. - ~ ~)./5(8-30)

Roll dampin.g dominant << 1
I-UP) oN

Trk

UoI

2t r ( Yv gb f3uo16,g U0 O

Prsumi.g that Jisj negtv. rw can easily become ncgatitve for either

care. Thus, the coip.lex zeros are not only typically lightly damped, but

are likely to be dismdvantagcou sly located in the right hal~f plane. This

can hap~pen for al). the systemos illustrated in Figs. 8-8, 8-10, andl 8-11.

The dliff:iculties in improving the dutch roll. damping? occasioned by

ao approftchiJng cwd can be alleviatcd by incea sing . This is obvious,

in E. 8-31,) but nob at al) app-arent for Eq. P8-30. The secret there if,

that a suLf icient increase in Lp ccausos the irequality I (pg/uo)T-, >> I,,, 3
to be violGated so that the approxUrate factors no longer apply and, are

replacd, by t-he second so-t * The actiil decrease of mDL./cL'd is oi linar.Ay

accoimplished wi',th thc, ild of a roll. damiper.

Vqturo of Oai-n n~fo,,. !)"tch )1olI. 3)bi-no Arentntion

Just as wiJth the othe.r rsystr.,nms consitdered,. the nature of approj,iate

gai.n adjustir,-ntrs with fli~ght envixonncnt 3 paame Lers for the yawr damuper

depeyidc on the dcol~icd closucb-ioop dhax-acterls.sU.cs. If' dutch roll. damo-'ainZ

is to be constAoln1; t,i.hen



,,,. 1 " COX tailt (8-32)
- Z -'Or =- aug cntn

or Kr c 1 1 (8-33)

On the other hand, if the cJ.osed-.0op dlutch roll damping ratio is to be

nearly invariant, then the desired relationsa.p Wuill be

drN~ "--contant -3

2V 2V IpI

This iqp)lies that the variati.on of gain with flight paramcters shou.d be

Kr V, (8-3)
] Sr pl/2U

Agin; a, with all the ga:Ln compinsamtion considerations discussed in this

and the prev:i.ou; chapter; the actual nature of the compensation will

depend on the specifics of vehi.cle dynamics., closed-loop dynamic per-

forn.ancc envelope speci.ficatios, fumctiona.l mechanivation of the gain-

changing devices, ctc.

The foecdblc- of si.dsl . p ang.ie or sideslipping velocity to the rudder

is practically equ'i.valent to the augmentation of the directional. stability

derivatl.ve N1 (or Nv). It serves in a very useful .ay to Winimize the

sideslip angle (umcooed-:i.nation).

The transfer funct:i.on .i:heh relates sideslip angle to radder defj.ection

has the form

p(TS, Tp U

8.,\~ 7



Figvc.. 8-1 2 sc;the Oyol-om~ ,survey fo.-. ncaiv eedbich of~ the

&r~-Z. y;~~i.T1h hts tL-he ei'CcL of def Itbi3.l'Azii the eapericed).c

spircul nPotiop. and of~rcv~ the dlixteli ro).1 root-x to a htigher frequecncy.

This of cour C:, is the rcesuA' epected of an increase in directional

*F4Jabxlrty.

To improve the diech roll. clniping, a f3 covmponecnL can be added to the

controller, i.e.,

br -0,

A survey of this systemn is given in Fig. 8-1 3. As indicatcd., this

type) of systcm hwas excell3ent characterisic s as a sirif.-I-loop contUro). for

the improvement of the dlutch roll and the mnn:miimaLion of sideoli.-P

Appropriate ga-in adjustments with flight environmental pa ameters~e are
not xtrmebeing si-M.1ar to those for (Y. -- b., systems. The system is-

also ain excell.enit inner ).oo,,) for roll, attitude and ot~her outer l003) con-

trollers. Its Primrary de0ficiency it. a practical. one in instrwienzting an

adequate sideslin sensov. This is, to some extent, alleviated. by the

possibili-.ty of a in te)ral acceleration sys Loi).

8. 6 Y-PDDD-WKc C., .O '3 :~Y

Somec of the favorablec features Of, p -- b~ r2(4 3 systoms can

be obt-ained, by SUbStitUt.nMg a propperly locted iMeral. accelecrometer for

the sideslip smnsor. The simlU.aritty bet-ueen the twxo systems con be seen

concepc.:3.] from the sidle accel~enation equati.on and the expression for

side tic coe ert'ion at a general location, viz:

aY YvV + Y (8K38)

ay acg.* r

+ Xa Y6 (8-3+9)a

These cqcttt:ons ame the JIateral. analogs to the 3.onCgit-udjxa a ci d-1cum-(ed
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at leng Lh in Catuer 'I, aid the s:;na~Ii i of ceieter of roviation and

center of~ percivs-ion railation1.i apply. i thiis case the, center of

rolmtlo corresponds to that~ acceleromieter location distance, 7a, for

which thec ya col;.3lenit vill. ten.Yj3 to offset, te Y6,8. comiponent, thereby

leaving Y-vv (or Yp(3) a-, the unjor puirt of the v -, eleitioin mieamred..

The relationsli-lps can be developed in a fashion miarto the longi.-

tuclinal case or, alternai-tively, dircetly by finding the instantanecous

center of rotation. To do th-is, consider thcx--Ue initi .al yaiwir)g accelera-tion

due to a rudder stlep iiput,, br,>/s . Th---X' 1.711 be

- ~Or~ro(8-ho)

Consecjuentl1-y, iU (Eq. 8-39)

5rro aC)(J)

or 
x

the initial Part ol' the lateral. acceJlextion 3:esponse to a Step rudder

input will be proportional to the, sideslip response to the rudder

deflection.

In termus of, riondiircmsiomA. derivatLives the, ideal. xa become-s

Xa * ~ CY6~

~ ) (8-4 2)

b(1 6.
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I.,+ - ,!Y*5 1' ~x kIrLt Y( oj~ 14- - Jb2

Fvcm this it; ;seen tha placing the., tcceilerom-e tcr at the (-i5

irn-'n*,neour- centecr o-J. rot'uJUtion wil ~e the :Icadins com4 J.:t-

m~en; Zero, just-' as. in thle analogous lmpg.tudlima3 case. For the accelor-

ut~otcr at 'thc in csconicn of rotation, the nwme-rl-tor then beeo:. ,,;

The approxJurmlte '."ctors for this acmratorv axe (T,)Lc 6.--h

1 U -O TLYbT4
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71e signa of 1 1/. w.ll ..-- r- 11. depend only on the location of the

rudder with res-xect to the c.G., and i:ill be negative for aft and

positive for f6".,rd .ocations. The breakpoint corresponding to

1ITay3.. provides a corvenient upper limit of approxCiI!ate correspondence

betucon ay .and 1.- At frequencies bel,.i this .be two are auLmost directly

proportional, i.e.,

yay
3

Above this frequency the rudder deflection wi]ll destr oy the correspond-

ence between side acceleration and sideslip angle or sideslipping velocity.

Figures 8-14 .and 8-15 showr system surveys of y -, b. and aycy -x- br

control systems, respectively, for a situation where the.accelroypeLer is

near, but behind, the center of rotation. A- expected, the dynami.cs of
these-systcs are suite siiilar to those of the corresponding sideslip

controllers illustrated in Figs. 8-12 and 8-13. A major difference, ho.-

ever, between these two general types of systems' iS not. revealed explicitly

in the system surveys. This is the rmtter of' necessary gain variation to

keep the closcd-!loop system dynamics ithin specified bounds. Agaii, the

differences between the lateial. ay and p systems are similar to those

betwcen the longitudinal a z and a controllers. In complete ai)alor to

the latter systems, the controller gain, Ky0 ust vary as I/pue if it i5

to simulate a constant-gain sideslip controller.

Although rudder control systcims us.ing ay,6iy -i- 5r are not as con on,

as wshed-out yaw dampers, they huve been successful in past applications.

This type of system is parLicu]arly advantageous for gun-firing aircraft

where two.-control (aileron and elevator) lead/pursuit maneuvers without

sideslip are required,. and on rocket.-fi.ring craft whe r sideslip -miniiza-

tioD is d<esixable to sbin.].ify the fire control equipmen u design. It also

'sharcs the excellent properties of the 5 - 5r system as an inner loop

in more complex multi.loop systems.

Early -models of the B-52 bomber also (depended on a side acceleration

feedback to the rudcer to dawp the dutch ro]1, but the principle of

operation of the damper w.:as com.plotely d.fferent from the one d:i.scusced

8-56
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abv.In the zM3-: '.4 ial)-5P &ij,>j, t)lL ie~e~tCr.i

sensed in the finx (uhcre it consiste~d : buost crdA rtly ofr an xur sieft-vil)

atid unad pceudoi-*ntcgird (ige)so ttz to prod1uce a signal1 roughIly

proportLonnl. to yavinrg velocity, at the d'utch roll frequency. This

3atter slgialv as thcn ciuployedI to deflecct -the rudder.

8-39



9.1 20t~TC: UNS!TW DNW ROCNS

In Chapter 1 there was occasion- to- sugst the im ortance of feedback

to the solution of-the prqoblem of control ,and guidance of aeronautical

vehicles. In particular, its oies in making the vehicle amenable to

following guidance cammands and- in suppressing the effects of distu:bances

were emphasized. Since then the text has exposed the mathematical and

physical principles necessary to the solution- of the deterministic

sis problem, i.e., given the (deterministic) input and the mathe-

matical description of the system, find the output or error. This,

however, by no means represents a solution to the design or synthesis

problem, i.e., given the input and the desired outputor tolerable error,

find the system.

As a general term, synthesis may be defined as the process of

ccbining elements into a unified whole. A flight control system may

be considered as the combination of two basic portions- a controlled

element (vehicle) and a controller. The controlled element is charac-

terized by output quantities to be controlled and input quantities to

which control is applied. The controller has three functions, namely,

sensing, actuation, and equalization. The first of these is performed

by sensors, or elements capable of detecting the output quantities to

be controlled. The second function requires actuators, or elements

capable of applying control. The third function, equalization, includes

all of the means required to connect or modify the perfo-mance of any of

the system elements and of the overall system to achieve satisfactory

syitem operation.

While, in principle, any of the components within the system are

subject to modification to better the system as a whole, in practice

some are more alterable than others. In many cases the controlled

element is more or less predetermined by factors beyond the scope of

the system designer. In other situations, it is assumed to be known

9-1'-



in order to facilitate the design process. Thus, while the ,controiled .,

element is usually considered to be uinalterable for the duratin of a

design calculation, this viewpoint should not be allowed to prohibit

vehicle modifications which may improve the system. Sensing and

actuating elements are only "quasi-alterable" in practice, because

they can be changed only by selection of a different item of the same

general class. Equalization elements are completely alterable within

the realm of physical realizability and practicality. Following these

remarks, system synthesis may be defined on a narrow basis as the process

of determining theo-properties of a mechanism required to control an

unalterable rhysical elemient in some desired fashion.

The final aim of system design is to integrate components into a

functional system which performs its assigned tasks "satisfactorily."

The design process leading. to this end can be broken into several

phases which are more or less chronological, yet which are extensively

interrelated and interconnected. A typical set of such phases might

include:

1., Specification of System Purpose and Overall System
Requirements

At the design stage, system purpose can be equated, with
mission phase or task definitions. Requirements are partially
derivable from the functions needed to be performed to accomplish
these mission phases (operational requirements), and less directly
from-the characteristics of the interconnected components and the
environment in which they operate (implied requirements).

2,. Determination of Unalterable Element, Cammand, and
Disturbance Environment Characteristics

Typically the characteristics of some component parts of
the system are not subject to the choice of the system designer.
In aeronautical control and guidance such "unalterable" elements
often include the vehicle itself and possibly the control surface
actuators and some of the motion quantity sensors. The "structure"
of the commands and-disturbances is likewise, not subject to the
choice of the designer but is instead a direct consequence of the,
mission or task and the environment.

9-21



3. IV62utimi of -Ccqetiig FeasIble ft4As (~ai*ia
hule --ctional ock DIagram)

Usually the requirements can- be met in more 'than one way,
i.e., with different systems. Then it is possible to evolve
cmpeting systems which-become candidates for selection on the
basis of certain desirable properties.

k. Competing System Assessment, System Selection

The competing systems can be compared on a very large number
' . of bases which can be divided into two categories: design

quantities and design qualities. Design quantities :include
the dynamic performance(relative stability, accuracy, speed
of response or bandwidth, etc.) and the physical characteristics
(weight, volume, power or energy consumption, etc.). Design
qualities include safety, operational capability, reliability,
maintainability, cost and so forth. An "optimum" system is
one which has some "best" combination of all these features.

. Detailed Stvdy of the Selected System

once a "best" system has been selected, it is still necessary
to wring it out for all nominal and abnormal operating conditions.
The components which do not yet exist as hardware must be designed,
fabricated and tested as components. As many pf these as it is
possible to Include should be assembled in a simulation of the
system, and finally the system needs to be tested in its actual
operating environment, i.e., flight in our case. At each stage
of the testing process the assumptions which were made in previous
phases of the design should be checked for validity. If actual
conditions violate the assumptions, a new iteration of the design
should be begun at the point where the incorrect assumption was
made.

It is in this, or a very similar way, that a functional system is

synthesized, in practice, so as to satisfactorily meet all its performance

ojectives.

In the, sections which follow, we present the concepts on which the

requirements for automatic flight control systems are based. This

process begins with a definition of the mission and becomes increasingly

intricate and detailed as the flight control system is examined in its

more intimate details. After the discussion of mission-centered and

operational requirements, we turn to a consideration of the more obscure

requirements implied by component or system design specifics. Flight



control systems are largely feedback controllers, so the subsequent

r article treats those flight control system re quiremsents satisfied by

the application of feedback principles. ' Finally, the bases for

compromise in selecting system bandwidth are described.

After covering the first or requirements phase of design in the

initial articles,, the chapter concludes with a brief section on simula-

tion and flight, testing as the methods by which it is ultimAtely demon-

strated that the automatic flight control system satisfies the requirements.

Important stages in the design process ire not discussed in this

chapter. For instance, the characteristics of the unalterable element,

the aircraft itself, have been treated in Chapters 47-6, and the subjects

of describing analytically the commands and disturbances, as well as an

introduction to system dynanic performance assessment, are deferred to

Chapter 10. This scrambling of the order of presentation is, in part,

a reflection of the interrelationships between the subjects, and is done

here partly to permit ar orderly development of the mathematical background

for the several topics.

9.2 =SION PHASES kD OPETIONAL RE4UIRDMTB

In any aeronautical system design the requirements for subsystems

evolve in a pyramidal fashion, and become more numerous and detailed as

definition of the actual equipment is approached. The apex of the pyramid

is the mission purpose and definition (see Fig. 9-1). Immediately below this

central point are three blocks involving considerations which interact

strongly, in the earliest preliminary design stages: mission phases,

vehicle operating point profile, and guidance possibilities. When the

mission is fe.sible, one or more felasible vehicle operating-point

profiles are joined with one or more guidance possibilities to enable

the overall system to perform through the constituent phases of the

mission.

Vehicle operating-point profiles and guidance possibilities can

ordinarily be expressed in concrete numerical terms. The mission phase
"structure," however, is basically open to choices. For flight control

design purposes, the mission phase categories should be selected so that
94



Mission
Purpose and
Definition

Guidace VeicleMission,
Operating PointPossibilities Phases

Figure 9-1. First Step in Flight Control Requirement-a Evolution

the quantities required to define flight control activities are determined

once the phase is identified. A mission phase structure based on maneuvers
is ideal for this purpose. In Table 9-1, for example, an aerospace mission

is broken down int-o mission phases which serve to indicate the sequences

required for its accomplishment;

At this point the flight control system commands and the basic flight

control references are, in principle, determined since these must be such

as to allow the vehicle to accomplish each mission phase. This usually

amounts to the specification of the outer loops required.

Two other elements of the flight control problem also enter at this

stage. These are those forcing fundtions and vehicle dynamic, properties

which depend on the environment (as defined by the various mission

phases in a gross way) and on the operating-point profile. Such a

dependence is illustrated in Fig. 9-2 a4d Table 9-2.

This brief discussion illustrates that decisions about guidance

p6ssibilities, operating-point profile, and mission phases have a

direct influence on the flight control system design, since definition

of the command structure, references, kinematics, and forcing functions

is implied by the choices made.

9-5-



TABLE 9-1

V/STOL AIRCRAFT MISSION-MISSION PHASE MATRIX

MISSION CLOSE
TRANSPORT RESCUE ASW SUPPORTPHASE (ATTACK) (STRIKE)

Short field or vertical
deck taukeoff or launch x x x ___x x

Ferry or cruise x x x x x

Approach,. transition , .
hover

Land at forward site

Takeoff, transition
from hover

Takeoff from forwardsite x x x X

Loiter :(in traffic) x x x

Low altitude x
penetration

Weapon delivery x x x

Approach transition and
land' at short field or • , • ,

recover on deck

Legend: x denotes applicable nonlanding senent,

• denotes approach transition, hover, and landing segments

Thus fari two types of quantities about which information is needed

prior to the evolution of flight control system requirements have been

discussed. The first of these, the "mission-centered quantities" (i.e.,

vehicle perating-point profile and mission phases), result in "given"

starting points for subsequent dynamic requirements evolution. The

second kind of quantity, which might be called "system-interaction

quantities," is implied, for example, by the block diagrams of Fig. 1-6.

ConsideringcFig. I-6 again, it is evident that dynamic requirements are

imposed on the flight control system by virtue of its operation as an

element of the overall system-specifically that it operate properly

9-
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h

during phases of the mission in which a homing-type loop. is closed.

Based ozu this general requirement and the interaction defined by the

block diagram, a series of possible specifications for desirable flight

control system characteristics can be promulgated and expressed in ser>.7

terms, such as dominant features Bode or root plots. In the case illus-

trated in Chapter 1, the major interaction is due to the (l-t/) gain-

changing term in the guidance loop (see Fig. 1-5). Recognition of this

fact, and its implications on the overall system, provide the starting

point for considering this particular system inter iction.

9.3 ANT AMUROCK TO WLIED REQU11RDOMT FOR SYSTEM4 DECSI0

Unfortunately, any gross transfer function requirements derived

from considerations of the mission-centered quantities and system

interaction structure are not necessarily complete or even consistent

-with, acceptable performance in other necessary phases of the mission,

such as takeoff, response to nonguidance commands, etc. In many systems

these other mission phases, in which the guidance loop is not "tightly"

closed, impose stringent requirements on the flight control system over

and above those required for proper operation of the overall flight

control and guidance system. In such cases an appreciation of the

interaction which exists between the vehicle and the controller requires

a detailed examination of the flight control loop itself. Specifically,

one must consider the requirements imposed on the flight control equip-

ment by various types of controlled element (yehicle) characteristics,

flight control system command inputs, and external disturbances;, and

conversely, requirements implied' on the controlled element 'by various

possible flight control equipments.

This leads us finally to the "component-centered quantities" which

involve the primary blements of. the flight control loop, the controller

and the vehicle. Definition and thorough understanding of the general

dynamic characteristics and operating features ,of the vehicle readily

leads to identification of the phydcal quantities hich might be

controlled and to the, means throuh fVhich control can be readily

imposed.
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The following annotated outline summarizes the quantities required

as a basis for flight control specification activities:

1. Miusioc-Centered Quatities (Mission Phase and Vehicle

Operating-Point Profile)

a. Flight control system commands

b. Basic flight control references

c. Modal and command sequences

Define:

a. Disturbance, or unwanted input, environment.
t be encountered throughout the operating-
point profile

b. General characteristics of the controlled
element

2. Component-Centered Quantities

a. Vehicle-centered quantities, including

0 Vehicle steady-state maneuvering
characteristics

4 Vehicle steady-state asymmetrical

performance conditions

0 Vehicle output quantities (vehicle
motions)

0 Vehicle input quantities (means of
imposing control')

* Vehicle dynamic (tranSfer) characteristics,

* Linear, constant-coefficient

* Nonlinear and/or time-varying
linear

b. Coutroller-centered quantities, including

0 Controller input possibilities (ability
to sense'vehicle ouitput quantities)

* Controller output possibilities (actuation
of vehicle input quantities)

9_1Q



. System Interaction Quantities

a. Overall Flight Control and Guidance System

Interactions establish possible requirements imposed
on the flight control system by operation within the
overall system. Logically the guidance-control
dichotomy has both static and dynamic interactions:

S Operating Point Control- The fundamental
role of guidance is to indicate the desired
vehicle operating-point profiles inr sane
suitable physical form. Thus ot the
physical flight control command structure
and basic references derive from guidance;
and the role of operating-point control is
to translate guidance desires into.vehicle
mass center motions.

0 Limiting- Practical guidance equipment
may impose limits upon allowable vehicle
departures or rates thereof from operating-
point conditions.

• Dynamic Interacticns- In homing systems
guidance and control are inseparable
dynamically, so proper dynamic operation
of the total overall system Imposes demands
upon the transfer characteristics of the
flight control system.

b. Flight Control System

System interactions between vehicle and controller. for
various controller inptt and output possibilities
establish bases for requirementi selection and/or
evolution. Interactions must consider:

0 Sensing and equalization possibilities

* Relationships between loop dynamics,
accuracy, stability, and response

0 Partition of required system dynamic
characteristics between vehicle and
controller

* Vehicle dynamic requirements

* Controller dynamic requirements

When all of t''ese quantities and possibilities are thoroughly understood,

a detailed specification of functional requirements may be set up for the
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flight control system. It is ordinarily possible at this stage to delineate

:functional requirements directly-by ,assuming the vehicle characteristics -d

be unalterable and further assuming ihkt "desirable" sensors fall into a

relatively narrow class. With these assumptions the flight control system

interactions for .a specific case change from general to likely possibili-

ties. The functional requirements may then be concretely established,

and the choices of alternatives are limited largely to those possible at

the detailed mechanization level. This procedure is the one most commonly

adopted in flight control system design. On the other hand, if the vehicle

characteristics are considered subject to modificaticn, system interactions

betvwen vehicle and controller again assume the status of possibilities,

and dompetition between alternatives can proceed on a somewhat broader.

level.

In either event, the process of evolving a final set of functional

requirements which must be met by the system and its constitutents is

inevitably difficult. When properly performed it demands ruthless

objectivity coupled with ingenuity and a flair for selecting among

competing possibilities that one system configuration which is most

favorably constituted to accomplish given purposes. In principle, a

complete evolution of functional requirements is the result of an

optimization process which, reduced to its logical constituents,

requires

1, The establishment of an overall criterion which
measures the degree to which systems accomplish
their given purposes. The overall criterion depends
upon a weighted intermix of subcriteria. Subcriteria
are measures of those quantities contributing to
system success (e.g., performance, pilot and/or
vehicle safety, weight, energy, reliability, schedule,
cost, etc.).

2. Establishment of competing configurations.

3. Assessment of the competing configurations in terms
of the subcriteria and then the overall criterion.

The most fundamental element in the optimization procedure is, of course,

the establishment of possible alternative configurations since criteria

become academic and assessment meaningless unless there is a choice to

* 9-12



be made. It is at the configuration level that requirements implied by

a particular system configuration meet in a cQntest -with those which

stem from physical limitations, the result being the functional require-

ments for that particular system. Assessment across- cmpeting systems

then leads to a final system choice and a final set of requirements.

9.4 O AL MACK CONTRL MTE4 C=33UTI N FHLIT CMTOL

The' complete solution of flight control problems normally requires

a suitable intermix of open- and closed-loop systems. By their very

nature open-loop, systems are calibrated, so their application is

restricted largely to situations in which the acting inputs and desired

control responses are fairly well known a priori. In flight control

practice this required foreknowledge largely confines the role of open-

loop elements to partial solution of operating-point control problems.

Examples include throttle and flap setting, trim adjustment simultaneous

with the release of stores, near-impulsive velocity corrections, etc.

Even for these examples "loose," low response, feedback loops may exist

or the open-loop elements may operate in conjunction with closed-loop

vernierlike supplementary control systems. In any event, pure open-loop

control actions depend only on the response characteristics of the con-

troller and vehicle in series, so dynamic interactions are either prac-

tically nonexistent or relatively simple and straightforward. Consequently

we shall here say no more about open-loop control serving by itself aS a

complete flight system.

The vast majority of flight control systems are multi-input, multi-

output, multi-mode devices with many coupled degrees of freedom. Func-

tionally and operationally they behave as multiloop feedback control

mechanisms in which dynamic interaction between elements plays the central

role in overall system dynamic performance. In this and other ways flight

6ntrol systems share all the generic qualities of servomechanisms and

regulators. Adopting a point of view in which flight control systems

are considered as members of a broad class of feedback control systems

is especially useful in the evolution of~flight control system dynamic

requirements, and this view is the basis for the remainder of the

discussion of this chapter.
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In order to provide concreteness in the subsequent development, wershall use the system shown in Fig. 9-3 as a prototype. Although sane
flight control. systems may require a more complex block diagram repre-

sentation, the system shown is suitable for a wide variety known as
"single sensor-!oop" control systems. The system types classified

under this title have, the distinguishing characteristic that single-

loop block diagrams composed of analytically simple transfer function

blocks provide suitable descriptions of their functional operation.

On the other hand, the forward-loop transfer function may actually

include the closed-lop transfer functions of the inner loops in a

multiloop 'structure. Specifically in Fig. 9-3 the actuator loop has

not yet beeh replaced by iti closed-loop equivalent, although this step

shall be taken subsequently., Also, the feedback transfer function may

be a combined representation of two or more sensors. As will be seen

later, nearly every flight control system, including some with two

different control inputs, can be represented by single-sensor-loop

block diagrams.

A few remarks about the physical realities represented in Fig. 93

are now in order. Consider first the ideal system block, H(s). This

is, of course, not physical in that H(s) represents the desired transfer

function between output and command. (In subsequent developments H(s)

may represent: an ideal system between input, R(s), and output C(s);

input, R(s), and indirectly controlled output, Q(s); or command, V(s),

and indirectly controlled output, Q(s); instead of between C(s) and

V(s) as shown on the diagram. The distinction will always be clear

from the context.] Turn now to the disturbances) which enter the system

in four different locations. Disturbances may occur physically in yet

other places, but essentially all of these can be lumped into those shown.

Of the two internal disturbances, ne(s) and 'ia,) the second is by fa r

the more important. Normally the noise: or unwanted inputs, near the

error point is minimized by using high quality sensing instruments and

by careful design of signal circuits, so input signal-to-noise ratios

are extremely high. Further, a large proportion of the error point

disturbance is subsequently rejected in such eloments as phase-sensitive
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demodulators indorporated in the forward-loop amplification and

equalization block. On the other hand, the actuator error disturbance,

%a(s), while often small in absolute magnitude, is a>'-ost invariably

followed by large amplification factors within the actuator loop. These

are required in practice to minimize the effects of actuator load distur-

bances and closed-loop actuator dynamics on the overall system. These

high gains coupled with the inteinal disturbance, a ( s ) , . and limiting

within the actuator loop can result in'very deleterious consequences.

The actuator load disturbances may arise physical y fran several sources

inherent in the actual actuator instailation, in addition they may

include external disturbances imposed upQn the control surfaces.

With aerodynamic controls, a feedback path (not shown) also exists

between the vehicle dynamics and the actuator load disturbance point.

As already mentioned, the actuator loop will ordinarily be closed

with gains sufficiently high to eliminate the effects, of actuator load

disturbances on the control deflection. In these circumstances the

block diagram of Fig. 9-3 reduces to the one shown in Fig. 9;J4. Further,;

if the internal and external disturbances are neglected, the- even simpler,

diagram of Fig. 9-5 appears. Finally, for those circumstances in which

command feedforward and command input elements ,are not present, the

overall block diagram takes on the especially simple form ,shown in

Fig. 9-6. All of these block diagrams shall be used to illustrate

particular points in the following discussion of flight, control system

functions.

The primary purposes of a flight control system are to impose control

on the vehicle's flight path and attitude. In terms of the general defini-

tion of control given in Chapter 1, flight path and attitude control may

be defined as:

Flight Path Control-The stabilization and operating-
point control of te time history of a vehicle velocity
vector.

Attitude Control-The stabilization and operating-
point control of the orientation, aspect, or inclination
of a vehicle or portions thereof.

9-16-
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r Stabilization control often merges with operating-point control, especially

when the system is in process of change frn one operating-point to another.

Still, the distinction between the two aspects of control is often helpful

as a basis for establishing a dividing line between dynamic and steady-

state operating requirements.

When broken down, the flight control system's- basic overall, function

in accoriplishing flight control purposes implies a control system which

provides:

0 Stability (either general or at specified times)

* Desired responses to specified inputs

* Suppressions of the effects of undesired inputs

To provide these features the flight control system is called upon to

,perform certain specific functions. The functions are interrelated,

so lines of demarcation between them are difficult to draw distinctly.

One breakdown of specific functions is given below.

a. Provide Vehicle Stability. Most aeronautical and
aerospace vehicles which operate over a wide range
of flight conditions in6itablyj encounter stability
difficulties in 6he or-more flight regimes. Because
of large variations in the types and magnitudes -of the
forces acting, sophisticated vehicle design measures
alone are seldom sufficient to insure stability over
the entire performance envelope. Consequently a prime
flight control system function is ordinarily the
aupgmtntation or creation of vehicle dynamic stability.
In fieins of Fig. 9-6, a vehicle -having ,ustable dynamic
characteristics will possess a transfer function (s)
containing poles in the right half of the s-plane (HP).
With a flight control system added, the "effective"
vehicle characteristics are modified from

5(s)5(sL--- = %S(s) (unstable, i.e., poles in BlIP] (9-I,)

tO C(s) - Ga(s)Gs(s)
R(s) I + Ga(s)Gf(s)GS(s)

G( s) (9-2)
Gf(s) [1 + G(s)J
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With proper design the poles of the "effective" vehicle
transfer function Igiven by, the zeros of' Gf(s)(1 +0(s)])
lie in the .left half of the s-plane, thereby providng
stability for the "effective" vehicle.

b. Reduce "Effective Order"of Vehicle Dynamion. A consequence
of feedback is effectively to 'reduce the order of the system
transfer function within desired frequency regions. For
instance, the denominator of the open-loop transfer function,
G(s), in Fig. 9-6 is ordinarily of high order; and the
denminator of the closed-loop characteristics given by
G(s)/[I +G(s)] will be of this same order. However, the
fact that |G(j)J can be made much greater than unity over
wide frequency ranges sets up frequency regions in which
either the closed-loop poles are nearly cancelled by zeros,
or are otherwise removed from these regions to considerably
higher or lower frequencies. So, while theoretically the
denominators of G(s) and G(s)/[1 +G(s)] are of the same
order, practically the order of G(s)/[ 1 +G(s)], in a frequency
range of interest, canv be effectively lowered from that of
G(s). Expressed another way, the closed-loop transfer
function

I1 . " 1, when IG(jw)I >> 1 (9-3)

so all the modes of G(jw) in the frequency regions where
I G(jw)I >> have been effectively removed. An example of
the reduction of the effective order of vehicle dynamics
has already been presented in Chapter 3 (see pp. 3-49 to
3.56).

This reduction in effective order is one of the most
profound and significant features of feedback systems.
One of its more important consequences is an improvement
in performance potential. This is demonstrated in Fig. 9-7,
which shows minimum values of two figures of merit versus
system order, n. These results are obtained with unit
numerator systems, i.e., systems having output/input
transfer functions of the form

alr (s) n -  I a i +(94
a +a.1.. + a i + 1.

subjected to unit step inputs. In each case, the system
coefficients (the ai's) were adjusted to values for which
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a.

S(Figure of merit)

so the figures of merit shown- are those for "optimum" systems,
using a zero value of the total differential as the definition
of optimum.* From Fig. 9-7 it is apparent that a high, order
system which is "reduced" toa;ct like a second order system has
the potential, if properly adjusted, to give lower (i.e., better)
figures of merit than a similar system reduced only to the point
where it acts like a fourth order system. Here the process of
"reduction" requires the insertion of equalization, and, the
consequent addition of numerator terms to the unit numerator
output/input transfer function, Gcr(s).

a. Adjust "Effective" Vehicle Dynamic Response. This function is
related to the one directly above as the second step in a two-
step process intended to improve the "effective" vehicle dynamic
response for desired inputs. Reduction in effective system order
stems directly from setting up the condition IG(ja)I >>1 over
some desired frequency range; adjustment of effective vehicle
dynamic response follows in the selection of the restricted
frequency region where IG(Ji)1= 0(l), and in the tailoring of
G(jc) in this region. Normally, the closed-loop system has
three regions of interest, defined by

I,'I ]G(jw))
1G(jo) >> 1, over which i + G(jw) 1;

l(jo)l 1< ,over which A G(j)G(j)1; (9-6)

IG~jw~j <~ 1, + G(jw)'i); 96

and IG(jo) 1 0(1)

The form of IG(jw)/[1 +G(j)]I in this last region defines the
dominant modes of the closed-loop system dynamic response. In
most cases, G(jw)/[1+G(jw)] in the region where IG(Jw)I is of
the order of unity can be approximatedt by a first-, second-, or
third-order system and one, two, or three modes will be "dominant"
in the response.

*The validity of particular figures of merit is beside the point for
the present discussion, although of extreme interest if a figure of merit
is used as a performance criterion. For a detailed discussion of the

latter point, see: Wolkovitch, J.) R. Magdaleno, D. McRuer, D. Graham,
and J. McDonnell, Performance Criteria for Linear Constant-Coefficient
Systems with Deterministic Inputs, ASD-TR-61-501, Feb. Iq62.
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d. P ovide _pecified Co.md-Response Relati2nahips. It is often
desired that the flight control system provide same specified
relationship between ccmand and response. Referring to
Fig. 9-5$ it can be seen that the closed-loop transfer func-
tion in response to command inputs has the form:

,%(s)(Gi(s)Ga(s) + O,(s)]
1 + G(s)

When the magnitude of the open-loop transfer function, IG(jo)) j,
is much larger than unity, the relationship between 'he command
and response reduces to

G(jwj) - I (JW), -+ (9-8)
Gf(c)VG(jw) G& J

The designer has complete control over the transfer functions
Gi(s) and OF(s) and some control over Of(s) and Ga(s) [the
latter two are, of course, involved in the open-loop transfer
function, G( s), so they cannot be arbitrarily adjusted without
affecting the basic constraint JG( w) I > 1]. By proper selec-
tion of the form of the transfer function combination shown in
Eq. 9-8, the designer can provide almost any specified ccumand
response relationship, at least over the frequency regions where

G(jw) I 1. For manual control purposes these transfer
functions can be adjusted to provide a vehicle response to
piloted command which approximates the best vehicle in the
sense of pilot desires. Among other things, the effective
vehicle dynamics as seen by the pilot can be made substantially
invariant with flight conditions.

e. Reduce Effects of Unwanted Input and Disturbance. The primary
regulator function of a flight control system is to reduce
the effects of external disturbances acting on the vehicle
and internal disturbances acting on the flight controller
itself. For all but those disturbances acting at the input,
this function is again accomplished by virtue of the feed-
back aspects of the system. In Fig. 9-4, for example, the
system output with no command input is given by

C(s) * [a2(s)((s) +
1 +0(s)Cb()4s Ga2(3)%()ha(B) +Ga(8)Gb~sJ ~e~5)J (9-9)

Again, when IG(iw)J is much greater than one, the output due
to these disturbances is approximately

9-24
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COW) 4 ( + ,(,) + (l, (9- 10)
Ga( Jo)%G~(3a)Gf( 3(D Gaj (;w)Gf({3w) Gf( 3w)

Ordinarily the transfer functions Ga(jco)GB1(ja)Gf(3w) and
Gal(3))Gr(jw) can be made large compared with unity over
the frequency regions for which the external disturbances,
I&( w), and the actuator error internal disturbances, N( jc),
are important. Unfortunately, it is seldom possible to
specify independently the feedback transfer function, Gf(ja),
such that a similar reduction in output due to the internal
disturbance, ne(3w), also occurs. Even if this c6uld be
done, the desired input, R(3w), would have the same closed-
loop transfer function as n(jw), so no effective reduction
in signal-to-noise would accrue by closing the loop. These
facts are reflected in the emphasis placed on procuring high
quality instruments for flight control systems.

f. prens Effects of Vehicle and Component Variations and
Unoertainties. One of the principal differences between
flight control and other feedback systems is the enormous
variation possible in the controlied-element (vehicle
dynamics) over the entire operating-point profile. Con.
sequently, an extremely important function of an adequate
flight control system is to maintain the effective closed-
loop dynamics more or less constant. Considering Fig. 9-6,
a fractional change in Gcr(s), denoted as dGcr(s)/Gcr(s),
in terms of fractional changes in the elements within the
loop, is given by

dGcr(s) I f4Gas() d%(s) dGf(s)(
- - + - G(s) - (9-11)

Gcr() 1 +G(s)IGa(s) s(s) Of,(s)J

ain when the open-loop transfer function magnitude
1(6i I >> 1, the fractional change in overall closed-
loop characteristics reduces to

dGcr(3D) 1 d()%(jW) d%(3w)] dGf(3) (9-12)

Gcr (Ja) G(3W) [GaJaY G,6(3w) J Gf (ja)

The ben9,ficial consequences of large values of open-loop
tranifer function in lowering the effects of forward-loop
controller and vehicle variations on the overall transfer
function are apparent from this equation. Another point
worth noting is the complete absence of any beneficial
effect on uncertainties in the feedback path. Again this
is a reason for the necessity of very high quality instruments.
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g. ;Wroved Linearity. The elements of flight control
systems often contain nonlinearities either inadvertently
or by design. With the exception of command and other
limiting functions, it is ordinarily desirable to
suppress the dynamic effects'of these nonlinearities
so that more or less, proportional cause-effect relation-
ships exist between the various system inputs and outputs.
Although there are several ways of accomplishing this
"approximate linearization," the most common method is
also another attribute of feedback. In Fig. 9-8, for
example, when the element containing nonlinearities is
replaced by a.describing function, N( J5w;), and a
remnant, B(jw), the system output becomes:

Gf(jCo)1 + Ga(Jw) Gf(jw)N(JcD;6)] [1" + [ 1 Ga(ja) (w)N( ;5)(

R(S + (s) I " Nn~erteElemen~tw t  C(s, ) --(-,

(d)

I I ' BlQu) I

R(jw).,. 'E(jw) GO(-jW) g ~wutiCW

QuasI-Linear Replacement
,for Nonlinear Elements

S (b)

Figure 9-8. Replacement of Nonlinear Elements
with Describing Function and Remnant

*See Graham, D., and D. McRuer, Analysis of Nonlinear Control Systems,

John Wiley and Sons, Inc., New'York, 1961.
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This substitution of a quasi-linear representation
for a nonlinear element can be accomplished precisely,
in principle, .when the input signal is a periodic or
stationary-random 'function of time. For other inputs
a quasi-linear representation is sometimes useful
heuristically, although caution must be exercised
to avoid carrying linear system notions too far.

When the input signal to the nonlinearity is
,confined within certain amplitude limits, the open-
loop describing function can be made much larger than
unity over some specified range of frequencies. Within
these conditions the output reduces to:

C~jw) ~ 1 R(J'O) +1

Because the open-loop describing function, GaGfN, is
,so large over this frequency range, the remnant term
will be much smaller than without feedback, and the
output becomes approximately,

C(j ) - 1 R(jw) (9-14)
Gf(jcu)

To the extent that these concepts apply, the input and
output bear an approximately linear relationship which
is independent on the nonlinearity. Outside either the
amplitude (of the nonlinearity's input) or frequency
region where the open-loop describing function is much
larger than unity, this relationship will, of course,
no longer be valid.

Another illustrative analysis of the "linearizing"
properties of feedback has been given by West* for the
nondynamic case. Suppose, considering Fig. 9-8(a), that
the element with nonlinearities is such that C is the
function of 8 illustrated in Fig. 9-9. Call this function
g(b). Then from the block diagram

8 Ga(R',- GfC) (-I)

C g(8)"- g(0OGR-GaGfC) (9-16)

*West, J. C., Analytical Techniques for Nonlinear Control Systems,
English Universities "Press, London, 1960.
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No = _ g, (8) 1 (9-17)dR d8dR

Differeintiating'Eq. 9-15 and substituting,

or:

=C Gagt(8) (9-19)

When the open-loop function.GaGfg'(8) is much larger
than unity this becomes

dC, 1 j~'8

Again this illustrates the fact that the action of the
feedback is to linearize the nonlinearity as long as
the loop gain is high*

(0

Figure 9-9. A Nonlinear Function and Its Derivative
With Respect to the Input to the Nonlinearity
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h. Modifyor Eliminate Vehicle Cross-Coupling Forces.
Both aeronautical and aerospace vehicles often have
several coupled degrees of freedom. Some of these
couplings are desirable, while others can ,Cause a
great deal of grief. While high gain feedback loops
are used to swamp many of these crosa-couplings, it
is occasionally desirable to cancel out cross-couplings
by -generating almost exactly opposing forces and
mcinents via the flight control system. For instance,
with vehicle equatin's of motion given by

fai( s) al 2(s) a13(s) ir
"21 ( ) 822(s) _a23(s) j (P [N8]-20

the a32(s) off-diagonal term could be removed from
the effective Vehicle equations of motion by letting
8 equal

"N6 (9-21)

Attempts to decouple vehicle modes of motion in this
direct additive (or subtractive) fashion do not have
as widespread application in flight, control as one
might expect because of the' drastic variation of
vehicle characteristics throughout the flight
envelope. However, there are instances in which
deliberate crossfeeds of the type illustrated above
can be used with great success.

In feedback system terms the specification of desirable closed-loop

characteristics requires the definition of several desired closed-loop

'transfer functions. Hi(s). For the single-sensor-loop control system

shown in Fig. 9-6 such a specification implies that the system output

and canland be related by

C(jOC)desi.,,ed H(Jw)R(jW) (9-22.)

over a limited range of frequency.
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The-actual output for this system is

c =G) R(jw) + 2(Jw) G6 200)()

Of(ja)I1 + GjD) IGj) Gf(jc.)[1 +G(j J

(9-23)

ithere O(jw) is the open-loop transfer function Ga(jw)G81(Jwo)G82(jc)Gf(JW).

An "error," , can be defined which measures the degree to which the

actuil system approximates the desired system.

C(0)) = C(J)desired.-C(j03) = H(Jco)R(jw) -,C(ja)

= ~c)-G(jw) R(Jc) IX2(iJW ) )
Gf (,o)) )[1 + G(o) ]1 + G(W))

G+G(Jw

G(J) n(w) (9-24),
Gf(J)) +I G(Jc)]

If no disturbances were acting (p.=j =0), the error in approximating the

desired system by the actual system could be reduced to zero by designing

the open-loop transfer function to be

Oc Gf jW)H() (9-5
1 - Gj(jw)H(jw)

Tailoring the system to match this formi.a would, in principle, implicitly

satisfy the flight control function of providing "good response to

specified inputs." Unfortunately, Eq. 9-25 is only of qualitative

value in flight control applications. This is due to the fact that

disturbances are ignored in its formulation, and the equality is

difficult to attain when Gf(jw) and H(Jwy are only moderately variable

while G( jc) can vary between wide extremes.

In place of this direct, or "calibrated," approach most of the specific

functions of flight control systems are accomplished by the "swamping"
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action provided by feedback over limited regions of frequency by making

I G( iw) >> 1 . In addition, the specific fli:ht controi functions
involving suppression of external disturbances, minimization of effects

of system component variation, linearization" iJtc., -ae all obtained in

an approximate way using the same conditions, 4-,e., IG(jW)I >> over the
frequency ranges where these effects are important. Consequently,. a set
of limiting, .ideal specifications on the overall flight control system

would include:

1. G(Jw) >> 1 Over the frequency range for which
the desired H(jw) is to be closely

G(jw) approximated and/or over the fre-
.j) + H(W) quencies at which 1t(jw) and R(Jw)have substantial frequency components.

O_0utside the frequency region in which

G(UM) the major frequency components of the
Gf(ja)[1 +G( )] < J input and/or external disturbances

occur.

The first and second conditions reflect the regulation (suppression of

external disturbances) and servomechanism (development of an output

which is a specified function of a command) aspects of the problem. The

third condition minimizes the effects of internal disturbances to the

extent possible without detracting seriously fran the system's action

as i servo or regulator. It is possible, depending upon the frequency

content of the command signals and the external and internal disturbances,

for the several conditions to be in conflict. In flight control systems,

however, a reasonable compromise is ordinarily attainable.

The internal disturbances, n(jcA), lumped at the error poinfiii in

Fig. 9-6 are not substantially reduced by feedback action (although

the third condition above reduces their effect outside the frequency

region where feedback operation is dominant). Therefore, these should

be reduced to a minimum relative to the input, especially over the

frequency range in which H is to be closely approximated. In practice,

this reduction is accomplished primarily by detailed mechanizational

considerations.
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For control systems as a general class, techniques to synthesize

{ mathematically an approximation to the condi.tions enumerated above

range from elementary repetitive analyses to sophisticate& exercises

awloying constraints and resulting in "optimal" systems (approxima-

tions to H) which meet specified criteria.* In general the more

sophisticatd synthesis techniques are best suited to problems where

the 6aracteristics (e.g., power spectral and cross spectral densities)

of the commands and disturbances are known, where considerable latitude

is allowable in the form of the open-loop transfer function, and where

the controlled-element characteristirs are no more than moderately

variable. Unfortunately none of these conditions are present in most

flight control problems t6 any appreciable extent. Instead, the many

types of signals encountered are usually difficult to define in

sufficiently general terms, and the dynamic dominance of the vehicle,

places severe restrictions on physically reasonable forms for the

closed-loop transfer function. Consequently the emphasis in practical
synthesis activities is heaviliy centered on ,an attempt to provide

suitable control and stabilization for a wide range of vehicle dynamics,

in the presence of a large variety of command and disturbance signals.

For this kind of problem intelligent repetitive analysis is usually

the most suitable synthesis procedure. Regardless of the detailed

procedure used, the basic question as to desirable forms for H and

0jH must somehow be resolved. Certain very general aspects of this

question deserve discussion here.

As noted, the functions of flight control systems involving

regulationi or suppression of external disturbances, require an open-

loop transfer function, G, which is large over the disturbance bandwidth.

Similarly, the desire to cut off internal disturbances outside the

ccamand frequency band of interest requires G to be small at higher

*See, for examplep Bryson, A., "Applications of Optimal Control Theory
in Aerospace Engineering" J. Spacecraft and Rockets May 1967, pp. 545-553
and Rynaski, E. G. and R. F. Whitbeck. The Theory and Application of Linear
Optimal Control, AFFDL-TR-65-28, Jan. 1966.
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frequencies. The desired closed-loop transfer function, GfH, which

is approximated by the actual closed-loop transfer function, G/(1 +G),

can thus be seen to be basically that of a low pass filter.*

The three regions of interest, defined in terms of IG(jic) J, which

shed light on the desired low pass form for GfH are:

GIG(w)I << I 1 +G G (9-26)
G

'IG(Jw)I = P(1) - 1 +G

Since G itself is, in general,_ a low pass transfer function above some

frequency, the first two relations satisfy the spirit of the desirable

conditions enumerated above. The crux of the matter occurs, of course,

In the crossover region about frequencies where IG(jw) l1.. The

behavior of G/(i + G) ,in this region defines the dominant modes of

the closed-loop response, or their frequency domain correlates of

bandwidth, peak magnification, etc. Consequently, the major part

of the system closed-loop dynamic behavior is implicit in what goes

on when IG(jw) = 0(1). G and G/(l + G) are so closely interconnected

in this region that both ordinarily require consideration. At this

point, ,gross general considerations must cease, and we must become

more specific about system and element details.

9. 3BASES FOR COMOMISE R SELMECG CROSSOVER PZGIOX

Considering Fig. 9-6, it is an easy task to find the closed-loop

transfer function G(s)/[l +G(s) once G(s) is given (the subject of

#G/(1 +G) does not necessarily possess a low pass nature all the
way to zero frequency when only the vehicle short period modes are to
be controlled. Even in these cases, however, the desire is still to
have a low pass closed-loop system within and above the short period
frequency regions.
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Chapter 3). The dominant modes of the closed-loop system are also easy

to find in these circumstances. On the other hand, it is often difficult

to specify what the characteristic frequencies of the dominant modes

should be. In terms of closed-loop frequency response- this last

statement is equivalent to noting that the bandwidth is difficult

to specify with any degree of precision. (Bandwidth is that fre-

quency at which IG(jo)I[1 +G(J)] cB is down -3 dB from the low

frequency value, usually zero dB when the closed-loop system is

lo pass.) Bandwidth is closely related to the crossover frequency

(frequency at which IG(Jc)I =1) and is also a crude measure of the

undamped natural frequencies and/or inverse time constants of the

dominant modes. So, even though the latter quantities are actually

of principal interest, the following discussion shall use all of these

terms loosely as if they were more or less interchangeable.

The root of the difficulty in deciding upon a closed-loop bandwidth

requirement stems from incomplete knowledge of the inputs and disturbances.

Consequently, uncertainty exists about Just how far in frequency the

inequality IG(j)I >> 1 should hold in order to attain good performance

in response to commands and suppression of disturbances. On the other

hand, the total frequency range over which IG(Jw)j can, or should, be

made large relative to unity is restricted by considerations of

stability, equalization economy, actuator-loop characteristics, and

suppression of internal disturbances appearing at the input. Each of

these factors is discussed in relatively general terms below to indicate J

the broad bases for compromise involved in bandwidth selection.

Stability Considerations. Perhaps the biggest factor involved in

bandwidth selection is the general form of the open-loop transfer
function G(s). For example in a single-sensor-loop system, G(s) is

made up of two primary components, the controlled-element transfer

function, (s) =G61(s)G8 2 (s), and the controller transfer function,

Ga(s)Gf(s). The product Ga(s)Gf(s)G6(s) must be such that a stable

closed-loop system is possible. When the form of Ga(s)Gf(s) is fairly

limited for reasons of equalization economy (see below), and a relatively

unalterable form exists for G6(s), crossover can occur only in particular
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frequency regions if stability is to be assured. If "good" response

to, say, a step or other input is also necessary these restricted
frequency regions become even further limited.

The simplest limiting case in which a bandwidth specification and

stability interact occurs when the vehicle transfer function is unstable.

A single-sensor-lop control system is then conditionally stable, and

same minimum gain (and hence some minimum bandwidth) is necessary if

stability is to be achieved.

For systems containing a stable vehicle as an element, or for loops

'which do not require a stable closure (e.g., inner loop of a multiaxis

flight control system), a theoretical minimum bandwidth does not exist.

However, the regions In which gain crossovers consistent with stability

and reasonable transient response can occur can be defined within narrow

limits. Fcr a system to be neutrally stable (i.e., have closed-loop

poles on the imaginary axis of the s-plane). the open-loop transfer

function must satisfy either

I(,W)I 1 1, 4G(Jae) = --

for some value of to, or G(O) positive (9-27)

1GW]= 1, 4G(-c) -A

for o = O. Most of the transfer functions encountered in flight control

applications can be adjusted to avoid either neutrally. stable or unstable

dominant modes simply by making

IGOO)I < I when 4 G(). =

(9-28)

and 4G('w) > -i *hen IG(jw)1 = 1

These are the common conditions of positive gain margin and phase margin,

respectively. These simple statements always apply for minimum-phase

transfer functions. Equivalent simplified conditions may be delineated

for any given transfer function form by starting with the Nyquist
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r criterion, defining new gain and phase margins and modifying Eq. 9-28,

etc., as appropriate for the particular system. For a given system the
derived gain margin and phase margin conditions define a maximum bandwidth

(crossover frequency).

Compatibility with requirements for stable closure can also be

inferred from the. general slope characteristics of the open-loop

amplitude ratio., IG(Jcu)l, in the crossover region. This follows

from the well-known relationships existing between amplitude ratio

and phase. The phase angle of a minimum phase transfer function, at
a frequency a)c, in terms of the slope of the amplitude ratio is

Srdl(nl

EdIG I ~ )i r ~o
+ L d (1nu =A(!)

2at (1n~' [d ln I] ln coth 2 dl~

(9-29)

where the slopes, dG/d[In w/wc] are expressed in dB/decade.* the

In coth jin(w/%)1/2 term in the integral, shown in Fig. 9-10, applies
a large weighting to slope f lh In w ) 2coth d In-L)---

change in the imediate f 2

vicinity of c" Conse- - -

is affected primarily 3.uquent:Ly the phase at uc -"---1 11 1
by the local dB ampli- -

tude ratio slope (the M

first term in the ex- C - .

pression) and local

changes in this slope
(the integral term). If %1 Q2 0.40.6 I 2 4 6 10
the dB amplitude ratio W/We

Figure 9-10. Weighting Function
in Phase Integral

*Bode, H. W., Network Analysis and Feedback Amplifier Design,

D. Van Nostrand Company, Ince, New York, 1945.
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slope is essentially constant over a wide region -about oc, the expression

reduces to the first term only. For low :pass open-loop transfer func-

tions the amplitude ratio slope at gain crossover is negative, so a

positive phase margin can exist only when dIG(jw)Jd/d(ln w/%) in the

Imediate region is less (numerically) than -40 rB/decade, and the local

changes in- slope are moderate. Consequently., the available crossover

regions for most transfer functions are confined to areas. where the local

amplitude ratio slope fulfills these conditions, and the possible

bandwidths are restricted accordingly.

When a reasonable margin of stability and/or good transient response

is to be provided, the frequencies of possible gain crossover are still

more' limited. For instance, when phase margin is viewed as a measure of

stability margin alone (ignoring for the moment its interpretation as a

measure of response and other qualities) a minimum phase margin specifica-

tion of Z5 deg to 40 deg results in both a maximum possible bandwidth

specification (for a given system), and in relativeLy re.tricted regions

of possible crossover. In terms of the implications of Eq. 9-29 such

phase margins can be interpreted as limiting the crossover frequency

to regions where the -amplitude ratio slope is approximately -20 dB/decade.

These limitations on- crossover regions may be quite gross, but the main

point of the present argument is that they do exist.

Equalization Econ. In its narrowest sense, series equalization

is the process of modifying signals derived from sensors and presenting

these modified signals to actuation-devices. Physically the equalization

elements form the connecting links between sensors and actuators; and

they establish the form of the dominant low frequency cause/effect

relationships between vehicle output motions sensed and control actions

4mrosed upon the vehicle. Equalization thus reflects directly into the

possible forms for Gf(s) and Ga(s), at least in the sense that the

product GaGf is the means by which a control action, proportional to

some function of vehicle output quantities, is applied to -the vehicle.

Practical considerations impose limitations on the types of operational

functions derivable from a given sensor. Examples are: equipment

complexity; the ratio maximum-signal: minimum-increment-of-control
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("dynamic range"); noise amplification, especially as it affects

rsaturation in subsequent elementt; etc. Ordinarily such factors

restrict. equalization generation. (per sensor) to no more than integral,

proportional, and rate signals. Thus, if the single-sensor.-loop con-

trol system of Fig. 9-6 should contain only one sensor, the low

frequency form of Ga(s)Gf(s) is fairly well restricted to'

Ga (S)Gf(s) = -"+ Kc +  c (9-30)

Sensor and actuator dynamics, as well as high frequency lags from the

equalization elements, will be present in more precise mathemtical

descriptions of GaGf, but the above form serves to establish an upper

limit on total equalization.

The primary role of equalization is to modify the transfer function

o(s) in a fashion calculated to provide "Igood" closed-loop dominant

modes. As the means to this end, equalization elements may-be employed

* - to raise low frequency IG(Ja) j levels to approximate the .conditions

IG(iw)I >>.1 over a desired frequency band, and also to modify the form

of G(s) in the crossover region such that "good" dominant closed-loop

-modes result. Therefore, equalization can be an important factor in

the crossover and bandwidth limitations imposed by stability

considerations.

None of these comments are news to anyone even remotely aware

of elementary servo theory, but the point of the discussion--that

total form of equalization available is often narrowly limited by

practical considerations -'still needs to be emphasized.

Actuator-Loop Characteristics. The actuation element, so blithely

dismissed thus far as an inner loop, must often contend with a wide

variety of nonlinearities and disturbances, as well as bewildering

dynamic effects occasionally inherent in the elements themselves.

Because of the difficulty encountered in coping with the physical

realities imposed upon the actuation loop, many experienced flight

control designers steadfastly believe that a sound solution of the
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actuation problem is the real secret to an ultimately successful
design.

In general terms, the suppression of load disturbances (Fig. 9-3)

within the actuator loop demands that the open-loop amplitude ratio"

for this loop be large over a wide range of frequencies. Further, the

closed-loop dynamics of the actuator loop are generally a predominant

factor in setting the outer loop crossover to some value consistent

with overall flight control system stability. On the basis of both

these considerations, the bandwidth of "the actuator loop should be

as large as possible.

.There is, of course, another side to the coin. Perhaps the easiest

to see is the general effect of internal disturbances at the actuator

loop input on practical elements contained within this loop. To illus-

trate this point, consider as, a gross approxintion that the closed-loop

actuator dynamics have i ford similar to that of the ideal low pass

filter characteristics shown in Fig. ,9-11. A system possessing these

0 80(0 Rise Time O

r 40-

Duration, of'/2------. Oscillatory Transient

0 WO "Slope

OFrequency w (linear scale) Dea .e .t

Dead Time wo/wo
, {WO

b) Step Functlon Refpo0se
•7 :.," o(t-W

ob - -- -- where x
a. sin y d

Fdi
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A

characteristics would pass all signals without attenuation up to a

frequency of ft; and the phase angle between an input sine wave and

the steady-state sinusoidal output at the same frequency would vary

linearly with frequency from zero to a maximum'-lag of po at wo. These

properties are, of course, unrealizable in a nonanticipatory device,

as is-made obvious by the initiation of the output response prior to

the onset of the step input. Note, however, that neither the frequency

response nor the transient step response is very far from approximating

the characteristics of practical servamechanisms.

If the frequency response characteristic shown is obtained from a

closed-loop control system, the simplification that the open-loop transfer

function is very large for frequencies less thanw o and very small at

higher frequencies is obvious. Thus, if the frequency content of-

actuator cimand and actuator load disturbance signals shown in Fig. 9-2

is largely composed of frequency components less than wo) the system

would be satisfactory in both its servo and regulator functions. In

this sense the actuation system would have very high integrity indeed.

-Now, assume that the flight control system internal disturbances

presented at the input of the actuator loop, aa, can be represented

-by a constant power spectral density, 0, over the actuator loop band-

width. 'The mean-squared actuator output due to the internal disturbance

input will then be given by*

+T

~1 2

82i f 8 8(t)dt

am

*See Chapter 10.
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* Eq. 9-31 indicates that this undesired mean-squared output increases

directly with the bandwidth, oo . Since the signals within the actuator

loop are directly related to the output, these signals will also increase

more or less proportionately to the actuator closed-loop bandwidth.

Saturation, however, invariably occurs in. one or more of the actuation

loop elements, so an increase in the general signal levels within the

loop will unavoidably result in more saturation occurrences per unit

time. In the limit, of course, this can betone bad enough to almost

entirely remove any connection between the actuator output and its comuand

:put.

We have remarked previously that the effects .of unwanted signals

appearing at the input of the overall system are seldom deleterious in

a good design, although the same effects mentioned here may exist in

principle. The significant differences in this regard between the

actuator and outer loops are that actuator loop bandwidth is an order

of magnitude or more higher than those of tle outer loops; and

the relative magnitude of command and disturbance signals occurring

at the actuator loop inputs are much more comparable.

Another physical effect directly related to that discussed above

is the increase, with actuator bandwidth, in the power and energy

required by the actuator to perform its totally useless task in

following the unwanted disturbances.

Other practical points mitigating against indefinite extension

of actuator loop bandwidth arc the economic, weight, size, and

reliability costs paid for extremely high dynamic performance devices

operating at high power levels, and the almost inevitable troubles

encountered 'due to higher order dynamic modes. The latter may stem

from either -the vehicle dynamics or the actuator load dynamics.

All of the above discussion is intended to lead to the conclusion

that actuator loop bandwidth should be as low as possible, consistent

with suppression of actuator loop disturbances, effective linearization

of nonlinearities, and outer loop stability and dynamic performance.
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Effects of Noise at the Input. As noted above, the argument for

restricted actuator loop bandwidth can be made in principle for the

outer loop. To the extent that this argunent applies, one conceptual

basis for bandwidth selection as a tradeoff is, apparent. The competi-

tion involved would exist between command or input signals,, K(s), and

internal disturbances, n(s), (Fig. 9-6) and the tradeoff would be made

between response to commands and suppression of external disturbances

on the one hand, and the reduction of errors due to the internal dis-

turbances on the other. This basis of compromise is seldom of much

consequence in flight control systems since the scaling of desired

iignals relative to unwanted signals acting at the input can usually

be made very large with careful design.

Sumnary of Compromises in Selecting Crossover Region. With

equalization restricted to the reasonable forms noted, all of the

discussion indicates that the bandwidth, % of the closect-loop

transfer function, G(s)/[ + G(s)), is often not a ve'iy independent

parameter. Instead, it is ordinarily restricted in value by vehicle

or actuator characteristics which may be relatively unalterable. This

feature of flight control systems is quite different from many other

servomechanism devices. It can possibly be avoided by the introduction

of extensive equalization and by efforts to extend the bandwidth of

sensors and actuators. But this can be accomplished only by some

degradation in performance, an increase inm overall cost and unreli-

,ability, and a liberal education in the almost inevitable troubles

encountered with higher order modes. Thus the general conclusions of

this section may be summarized as:

1. IG(Jo)/[1+G(Jw)JI " 1 for w <

2. IG(j)/1+G(jw)jI << 1 for w >> w

3. w. must be great enough to control and/or stabilize
the vehicle modes for which automatic control is
desired; and, in any event, cannot be made signifi-
cantly larger without exchanging the increased
bandwidth for trouble.

4. Ranges of o are essentially fixed by open-loop
transfer function and stability considerations, at
values which result in good closed-loop system stability.
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9.6 6PEOVICATIONS M. TESTlG

The reader will recall from the discussion at the beginning of

this chapter that we proposed to defer consideration of the methods

for determining the -cnmand Fnd disturbance envi.ronment charac-

teristics and the m:ethods for assessing the dynamic performance

until Chapter 10. We turn instead to a very brief description of

the methods employed in the detailed study of a selected system.

Consider a case in which several competing flight control systems

have been evolved on a block diagram basis and the performance and

design qualities of these systems have been assessed. Oneof them is

then selected as having the best combination of desirable qualities.

It is subject to detailed study. Detailed study of the selected system,

evolved from the preliminary design process, actually involves a series

of increasingly realistic tests which attempt to thoroughly wring out

the system in both normal and abnormal operating conditions. The purpose

of all this testing is to insure, insofar as possible, that when the

equipment is put into service, it will not have any surprises left for

its designers and builders. Surprises occur when some mode or condition

of operation has been overlooked or when the assumptions used in con-

structing the mathematical models of the system elements are invalid.

Very likely the first model of the system will -have been based on

linearized descriptions of the system elements including the perturbation

bquations of motion of the airframe wzritten with respect to straight and

ievel flight. Among the first checks 'Po be made concern the effects of

small parasitic nonlinearities in the elements of the system. This may

be done on an individual and approximate basis by analytical means, but

,anything approaching a comprehensive study of the effect of multiple

nonlinearities in the elements of the system is, of necessity,, accomplished

through simulation. Even before any hardware is built, estimates may lie

made of the characteristics of, for. example, amplifier saturation, sen.'or

thresholds, control system friction, and mechanical hysteresis, ,and these

may be "mechanized" on a computer together with the other elements of the
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system so as to permit the evaluation of performance in the presence of

the system element'nonlinearities.

It is next necessary to consider the performance of the system for

motions which are no longer "small," and possibly also to relax the

assumption of the airframe as a rigid body. Some facets of the subject

of "large" motion's and elastic modes are covered in the reports and

papers listed in the bibliography at the end of this book. These
references, however, ray represent only an introduction to some of

the difficulties of a specific system, and, again, the performance

of the system in high climb or dive angles, at large bank angles, or

in rapid rolls is usua.lly studied by means of simulation. For this

purpose the six degree of freedom equations with nonlinear aerodynamic

terms, functions of several variables, are mechanized on a computer and

often several elastic modes are also included in the simulation.

If, at this point, the system and its elements still show satisfactory

performance, consideration may be given to the construction of prototype

hardware. In general, the equipment may evolve through several stages,

such as the breadboard model, the flight-worthy prototype, the preproduc-

tion model, and finally the production model. At each stage the equipments

are subjected to tests as components and are assembled for tests as a

-system. It may very well happen, however, that not all the elements are

,in the same state of evolution during any particular system test. Thus,

for example, a breadboard control amplifier might be combined with a

preproduction actuator' and so on..

Each component by itself, and the system as a whole, may be required

to comply with general specifications; or standards. The general specifi-

cation governing automatic flight control systems for piloted, naval

aircraftl is: Control and Stabilization Systems-Automatic, Piloted

Aircraft, General Specification for; MIL-C-18244A(WEP), Bureau of Naval

Weapons, Department of the Navy, 1 December 1962. This specification

makes reference to 26 other specifications and 4 standardk. These are

listed byway of illustration in Table 9-3. The roughly corresponding

specification for U. S. Air Force ai, craft flight control systems is:

-Flight Control Systems-Design, Installatioui, and Test of, PilotedF _9-44



Aircraft, General Specification for; MIL-F-9490C(USAF), Systems Engineering

Group, Wright-Patterson Air Force Base, United-States Air Force, 13 March

1964. This specification refers to 63 related specifications and 18

standards.

Many of the applicable specifications prescribe specific tests, such

as the radio noise interference tests, the environmental tests, including

vibration, altitude, sand and dust, humidity, high and low temperature and

salt spray. Otherwise, each component and the system as a whole, insofar

as is practical, is subjected to-tests for the purpose of determining its

frequency response, loading effects, linearity, effects of saturation and

saturation levols, switching transients and noise characteristics. It is

further usually the case that the automatic flight control system is

tested in closed-loop operation in conjunction with an aircraft control

system functional test stand and a computer simulation of the vehicle

equations of motion. The ground equipment required for environmental

tests and the closed-loop tests with the control system functional test

stand is illustrated in Fig. 9-12.

A typical test stand comprises a steel frame on which are mounted

all the important elements of the actual aircraft control system. It

includes the complete control surface actuating system, pilot's seat,

cockpit controls, and artificial feel devices. Stick forces which

would appear in response to motion, such as those which might be pro-

duced by a bobweight, are applied by a force servo driven by the computer.

Any automatic control equipment to be tested is installed on the control

test stand in a manner representing, as closely as possible, thelinstalla-

tion in the actual aircraft. Simulated aerodynamic loads are applied to

the control surfaces by means of mechanical or hydraulic springs and

dampers.

Some elements of the pilot's display are also often included to

simulate the stimuli to which the pilot responds in flight. Cockpit

instrument presentations which are commonly provided include the arti-

ficial horizon, altimeter, airspeed and Mach meters, the heading indica-

tor, possibly the turn and slip indicator, and localizer and glide slope

needles. In certain applications fire control or other weapon delivery

displays may also be provided.
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TABLE 90

SPFICATIONS .AND STARDARDS APPLICABLE TO TOE DESICG,
INSTALLATION, AND OPERATION OF AUTOMATIC CONTROL

AND STABILIZATION SYSTEMS IN NAVAL AIRCRAFT

MiL-C-18244A(WEP) Control and Stabilization Systems: Automatic, Piloted
Aircraft, General Specification for

JAN-I-225 Interference Measurements, Radio, Methods of,. 150 Kilocycles
to 2D Megacycles (For Components and Complete Assemblies)

JAN-T-781 Terminal; Cable, Steel (For Swaging)

MIL-F-5l 1 Fittings, Lubrication

MIL-S-3950 Switches, Toggle

miL-E-4682 Electron Tubes and Transistors, Choice and Application of

MIL-W-50M8 Wiring, Aircraft, Instalation of

MIL-E-5272 Environmental Testing, Aeronautical and Associated Equipment,
General Specification for

MIL-E-5400 Electronic Equipment, Aircraft, General Specification for

MIL-H-544O Hydraulic System; Aircraft Type I and II, Installation and
Data Requirements for

MIL-I-6115 Instrument Systems, Pitot Tube and Flush Static Port Operated,
Installation of

MIL-I-6181 Interferenc-t Control Requirements, Aircraft Equipment

MIL-L-6880 Lubrication of Aircraft, General Specification for

MIL-E-7080 Electrical Equipment, Piloted Aircraft Installation and
Selection of, General Specification for

MIL-M-7969 Motors, Alternating Current, 400-Cycle, 115/200 Volt System,
Aircraft, General Specification for

MIL-A-8064 Actuators and Actuating Systems, Aircraft, Class A and B,
Electro-Mechanical, General Requirements for-

MIL-M-7793 Meter, Time Totalizing

MIL-H-8501A Helicopter Flying Qualities, Requirements for

MIL-S-8512 Support Equipment Aeronautical, Special, General,
Specification for Design of

MIL-M-8609 Motors, Direct Current, 28-Volt System, Aircraft,. General
Specification for Class A and B

MIL-D-8706 Data, Design; Contract Requirement for Aircraft

MIL-F-8785 Flying Qualities of Piloted Airplanes

MIL-D-183oo Design Data Requirements for Contracts Covering Airborne
Electronic Equipment

MIL-N-18307 Nomenclature and Nameplates for Aeronautical Electronic
and Associated Equipment

MIL-E-1960O Electronic Modules, General Aircraft Requirements for

MIL-R-22256 Reliability Requirements for Design of Electronic Equipment
or Systems

MIL-R-23o94 Reliability Assurance for Production Acceptance of Avionic
Equipment, General Specification for

MIL-STD-203 Cockpit Controls; Location and Actuation of For Fixed Wing
Aircraft

MIL-STD-704 Electric Power, Aircraft, Characteristics ind Utilization of

, MS15001 Fittings, Lubrication (Hydraulic) Surface Check, 1/4-28
Taper Threads, Steel, Type I

MS15002 Fittings, Lubrication (Hydraulic) Surface Check, Straight
Threads, Steel, Type II
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Airframe dynamics are simulated on the computer. The computer

inputs are voltages proportional to control surface deflections and

its outputs can be voltages proportional to any or all of the airframe

output quantities (motions). These voltages are then used to drive

the pilot's displays, the simulated force producers, as simulated

sensor inputs to the controller and for recording the responses on

a recording oscillograph. Modulators, demodulators, and scale

changing devices are used where necessary to change the form and

level of electric signals.

The use of the test stand permits additional and more realistic

tests to be conducted, especially for those modes of operation in

which the human pilot plays an important role. Since the actual

operating conditions of the equipment are also much more closely

simulated than was the case when each component of the system was

represented only by a mathematical model, the test stand provides

information which might otherwise have to be obtained in flight.

This serves the desirable purpose of cutting down the number of

flight test hours required to tune up and wring out the automatic

flight control equipment.

Another important application of the control test stand' is in

the investigation of the results of possible component failures. A

systematic program of inducing specific failures such as mechanical

malfunctions and open and shorted electrical circuits is conducted.

These tests may be made both with and without the human pilot, since

it is important to observe whether or not the pilot can detect the

failure and can make a successful correction which does not result in

dangerous motions of the airframe. In any cases in which there may be

a question regarding the structural safety of the airplane, the tests

on the test stand are mandatory because of the danger involved in

determining the effects of component failures in flight.

Of course the test stand as it has been described above does not

simulate the motion cues to which the pilot will be subject in flight.

(Moving-base simulators are employed for research purposes, but they are

not commonly used in flight control system development.) In fixed-base
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simulation, the tests should be confined to cases in which the motion

cues can be considered to be unimportant or for which fixed-base results

are conservative:

At the conclusion of the test stand program :the prototype equipnent

is installed in the :airplane for ground tests. Sone of the test stand

tests may be repeated so as to provide assurance that the actual installa-

tion in the aircraft has not altered the nature of the test results to be

obtained. It may even be desirable to perform same closed-loop tests

with the computer representing the motion sensors and the dynamics of

the vehicle, but with everything else being the actual equipment. An

essential feature of the first tests of the flight control system in'

the actual vehicle, however, is the establishment of inspection test

procedures for the production system. Inspection test procedures are

required to insure that malfunctioning components are not installed in

the airplane. In addition, many automatic flight control systems require

individual adjustments after installation in the airplane to compensate

for component and airplane tolerances. Procedures for accomplishing this

must be developed and written in such a way as to be- redily understandable

by typical mechanics and technicians. Normally the procedure must be

developed by cut and try and the occasion of the prototype installation

is the first change to do this.

Final evaluation of the operating characteristics of an automatic

flight control system is, of course, made by means of flight tests.

The magnitude of the flight test program depends on the complexity of

the system being tested and on tbe, amount of ground testing which has.

preceded the flight tests. If a thorough flight simulation program has

been carried out on the control test stand, the flight tests, with luck,

may consist of very little more than verification of the results

previously obtained on the ground. On 'the other hand it may be found

that considerable development work has to be carried out during the

flight test phase. This will be the case if, for example, the pre-

viously neglected motion cves for the pilot assume importance, or if

previously neglected higher structural modes cause closed loop

instability. It will almost certainly occur if great care is not
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taken at all phases of the desig to forecast and to take into account

the unexpected and uncertain.

In any case many of the same aircraft input and output quantities

which were recorded during the ground tests should be recorded in flight.

TA fact insofar as possible, some of the same tests should be repeated

so as to -eveal any discrepancies between the performance in the ground

tests' and the performance in flight. A number of additional quantities

which may facilitate the analysis of system operation in the event of

unexpected modes of operation should also be recorded.

It is- then desirable to explore the conditions which may not have

been examined in the ground tests. These might be simulated tactical

situations, spins, or large scale maneuvers such as the Imelman turn

sometimes used in bomb delivery. (It may have been difficult or impossible

to simulate these.) Since these, new test conditions may very well reveal

new modes of automatic flight control system performance, some redesign

or at least the adjustment of system parameters may well be called for

at this juncture.

Following the successful completion of flight tests, the system

design is frozen, the production design of the components .is completed,

detailed component test specifications are finished, and the system test

specification (described above) is revised to accommodate the results of

the flight test program. The design process is then, in principle,

complete. Actually it will usually happen that the system-design

engineer may be called upon to resolve difficulties in manufacturing

or in the in-service use of the automatic. flight control system. The

resolution of some of these difficulties may even involve new changes

to component or system designs.
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CmAPTRu 10

AIJTA S PAND IORW ASSIMSMT

.10.1 1NTB0DLTIOK

The elementary feedback control system -concepts reviewed in the

last chapter provide a basis for the view that flight control system

performance "requirements," in the large, serve to define a system which

will fol.ow desired inputs, reject internal disturbances, and suppress

external disturbances. There remain the inevitable questions of how

well the "following," "rejecting," and "suppressing" needs to be done;

and what the tradeoffs may be between the design qualities of reliability,

weight, power demands, cost, etc., and the dynamic performance quantities

of following, rejecting, and suppressing. Further, in flight control

systems the controlled element (vehicle') is not entirely unalterable, so

the consequences of possible interchanges of function between controller

and vehicle are also subject to tradeoff considerations. In optimization

efforts, interactions between all of these considerations occur,. but

only the dynamic performance .quantities are at first involved in the

satisfaction of dynamic requirements.

The three key dynamic performance attributes in any system are

stability, response, and accuracy. There are many definitions of

stability, most coined to satisfy requirements of generality and .

mathematical rigor. For our purposes a qualitative operational defini-

tion will suffice, i.e., "if a small temporary input applied to the

system in equilibrium results only in a temporary change in the output

or response, the system is stable." For constant-coefficient linear

systems the stability according to this definition amounts to a

specification on pole location; in particular, denying all of the

left half plane and the axis of imaginaries, except the origin, to

the poles of stable systems. Poles at the origin are permitted in

principle by appropriately defining the output or response quantity.

Because stability for constant-coefficient linear systems is specified

by pole location, and because the methods of analysis given heretofore
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give precise pole locations, we have bypassed discussion of conventional

stability criteria in this book. Stability is, of course, readily

determined by any and several analytical and graphical techniques without

determining the precise location of the' poles. These are fundamental
and well khown,* so no further mention is needed here.

Once stability, relative to some operating-point, is attained in a

constant coefficient linear system, a unique stable equilibriumstate

exists insofar as the system dynamic excursions about that -operating-

point are concerned. The stable equilibrium state establishes a datum

from which perturbed responses may be computed and accuracy assessed.

Because the equilibrium is unique, accuracy and response are closely

related, with accuracy being assessed by an "error" response related

directly to the difference between input and output. If the equilibrium

were not unique, as might occur in a nonlinear system, the accuracy might

be completely independent of the input and output response. But, for

linear systems, accuracy may be considered to be just another response

quantity. In view of this, response considerations are central to

flight control system performance assessment. Flight control systems

are subjected to both deterministic and random inputs, so responses to

both categories are of interest and will be considered. To make this

possible, several simplified and idealized inputs will be introduced

in the first part of this chapter. These can be used with the system

mathematical model to determine the output responses whichserve as

the bases for system dynamic's assessments. In this connection we should

remark that if all the details are considered, flight control systems

are so complex and of such high order that the possibility of obtaining

a simple and adequate system representation might seem remote. Yet a.

*The more prominent are the Routh and Hurwitz tests and the Nyquist
stability criterion. For the Routh-Hurwitz criteria see, for example,
D. - Graham and D. McRuer, Analysis of Nonlinear Control Systems, John
Wiley and Sons, Inc., New York, 1961, pp. 457-460. For a comprehensive
treatment of conventional and several generalized versions of the
Nyquist criterion, see D. T. McRuer (ed.), Methods of Analysis and
Synthesis of Piloted Aircraft Flight Control Systems, BuAer Rept.
No. AE 61-41, Mar. 1952, pp. 111-2 to III-10.
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simple analytical form is almost an essential for preliminary design

purposes if physical understanding is to be gained rapidly, and if

repetitious, ad hoc, procedures are to be minimized. Fortunately the

feedbacks inherent in flight control systems usually result in a large

range of frequencies over which pertinent open-loop transfer functions

have magnitudes much greater than unity. As a consequence simple

systems can usually be derived which serve as close approximations

to the actual systems. The development of simple low order systems

to approximate complex high order systems has already been illustrated

with an example in Chapter 3. (See pp. 3-49 to 3-56.)

In a fundamental sense a control system, to be useful, must contend

successfully with all the inputs imposed upon it. A major step in the

design process is, accordingly, the identification of the type, form and

general character of the °input environment- followed by a detailed

assessment of the more critical input-system response combinations. The

critical combinations are especially important in the selection of band-

width (the general region of crossover) and the character of the response.

Because a flight control system has many different command tasks

which must ordinarily be performed over a large range of environmental

conditions and mission phases, a variety of inputs must be considered.

These may be classified, according to their point of entry into the system

block diagram, in three general categories-command point, internal, and

external. The command point inputs comprise all the flight control system

command signals geneiated by the guidance loop or otherwise inserted

directly. Some of these inputs are desired instructions for control while

otheris are unwanted consequences of nature or the result of simplifications

in the guidance sstem mechanization. The internal inputs are, in general,

all unwanted disturbances acting primarily on the controller. They arise

either from design compromise or from the operation of nature's side-effects.

The external inputs are forces or moments, induced by the vehicle or the

external environment, which act as disturbances upon the vehicle. Suppression

of the effects due to these forces and moments constitutes the action 9f

the flight control system as a regulator.
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A fair cross-section 6f-flight control system inputs is presented

in Table 10-1 Here another classification is introduced in tabulating the

inputs as a function of their analytical form. The first five entries

(steps, pulses, out-off ramps; initial conditions or impulses; gust function;

power series; and periodic or repetitive functions) are all members of the

deterministic class. They can all be expressed as functions of time, . nd

used to obtain system responses as functions of time under specific

circumstances. The last entry, random or nondeterinistic inputs, contains

two somewhat different types within the random class. The first type are time

functions which are either random by their nature or socomplicated that a

deterministic description is impractical. The second kind are generalizations

of a wide range of inputs each of which, for a specific case, could be

treated as deterministic. For some purposes it is more useful to consider

these signals as an ensemble and to describe the whole class of inputs by a

single random composite. Both types of random inputs have characteristics

which can be expressed only in statistical terms, with probability

distributions replacing a precise specification of the input as a function of

time.

The "random" inputs based upon generalization of an ensemble of time

functions which can also be treated as deterministic, in specific particular

cases, might seem, at first glance, to be of little value since their use in

response calculations can only give a smoothed-over, average view of
"reality." Two important points in their favor should, therefore, be noted.

The first advantage can be seen directly by taking a tack opposite to the

one already mentioned. A smoothed-over, average answer can, itself, be

significant, especially when classes of systems are being compared. The

second advantage is less obvious. It derives from the fact that a statis-

tical view, in practice, utilizes power spectra and correlation concepts.

These, in turn, provide bases for the partition of the frequency domain into

regions in which either the desired or the unwanted signals are dominant,

and for system design procedures which make use of the distinction. No

such basis exists for distinguishing between the two when the inputs are

considered as deterministic, for then the desired signal and any errors

(unwanted signal) are inseparable and indistinguishable. For these reasons,

several deterministic input entries in Table 10-1 also have their random

counterparts.
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In succeeding sections of this chapter the more critical input types

. -given in Table 10-1 will be summarized and, in some cases, idealized into

special "equivalent" forms which depend on only one or two parameters.

The initial discussion deals with the deterministic forms and with the

response of linear systems to deterministic inputs. This proceeds quickly

since-no new mathematical techniques are required beyond those already

exposed in Chapter 2.

The third section of this chapter is devoted to a presentation of the

methods of-describing random functions of time. This requires some new

mathematics and the development of the connections between the statistical

descriptors and behavior in the time domain. It is followed by the

discussion, in detail, of the analytical description of some speci'l random

functions of 'time useful for the representation of flight control system

inputs, and further by a discussion of the properties of the V6ry practica4Ly

important class of random processes with Gaussian amplitude distributions.

Methods for 'caldulating the response of linear systems to random inputs

are treated next, and the chapter concludes with two simple examples of the

application of these methods.

10.2 RESPOSE TO MMMS XPTS

Deterministic inputs listed in Table 10-1 include steps, pulses,

irpulses, cut-off Zamps, power series, periodic functions, and a special

finction used to characterize a discrete gust. The type of time variation

and the time domain and Laplace transform descriptions for the simpler of

these functions are sununarized in Table 10-2. Most of them are familiar.

* .•The special function used to approximate a di'screte gust, shown in

Table 10-2, Is made up of a step aril a cosine ,wave, both cut off after one

period of the cosine function (Fig. 10-I). The gust function is defined as:

k(1 cos 'T," 0< t< T
x(t)4 -{  2E O t (10-1')

,t>T
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2k
Tk JI-.Cos 2vt~

T/2 T time

T T

Fig. 10-1. Unit Area Gust Function

This form of gust description is intended to account for a gust gradient with

a gradual buildup. The proportionality constant, k, can be selected to

adjust the magnitude of the gust to any desired value. For aeronautical

applications the gust length, T, is brdinarily taken to be equivalent to

25 chord lengths, so:

T t 2 (10-2)
U0

As a Laplace transform, the discrete gust input becomes:

X(S) (1-eT
T 2 2,,e

(2ir)k Ci ~ T5)(10-3)

S s [s2+ (2,-)2]

It will be noted that the table gives approximations 
for square pulses,

cut-off ramps) and the gust function in terms of delayed impulses and steps.

These approximations follow from reasoning which shall be illustrated for

the pulse. The Laplace transform for the square pulse function is.:
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Qe [squiare Pulse] = _ -T)2(1-fIOo-4)

2 3B

If the system's dominant modes are characterized by inverse time constants

and undamped natural frequencies which are small when compared with 1/T,

then the higher order terms in the series for e - Ts will make only minor

contributions to all but the very first portion of the system's time response.

So, carrying the exponential series only to terms in s2

2Q [Square Pulse] TsI - ()

(10-5)

a -Ts/2

Thus the square pulse can, therefore, be replaced, under the conditions

noted, by an impulse having strength equal to the area under the pulse and

,applied at a time t = T/2.* System response calculations for the square

pulse, and cut-off ramp, and gust function inputs can thus be approximated

simply by moving the time origin for impulse and step responses back from

zero to -T/2 seconds. The approximations to-output responses obtained in

this way will range from very good when t >> T/2, to very poor for t < T/2

(where the approximate responses are zero). The adequacy of the approxi-

mation for time values between T/2 and t > T/2 depends, as noted, upon the

relative values of the system dominant mode characteristic and T. When the

characteristic frequencies (inverse time-constants and/or undamped natural

frequencies) of the dominant modes are five or more times greater than 1/T

the mid-range approximation (t > T) for the response, is ordinarily quite

satisfactory. The approximations improve as t becomes very large relative to

T/2 regardless of the relationships between dominant mode characteristics

frequencies and 1/T. The fact that the initial parts of the responses to the

*For a more detailed justification of this approximation see, for

example, J. L. Bower and P. M. Schultheiss, Introduction to the Design
of Servomechanisms, John Wiley and Sons, Inc., New York, 1958.
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approximating input forms are very poor approximations to actual system out-

puts is of no great consequence. Instead of using the approximating input

forms, the response6 in the time pcriod from t = 0 to T can be-found exactly

by using a step for the square pulse, a ramp function for the cut-off ramp

input, and the initial portion of a continuous I - cos 2vt/T wave for the

gust function.

To the extent that the approximations given above hold for the square

pulse, cut-off ramp, and gust function inputs, systems subjected to the

inputs given in Table 10-2 can be assessed by their step and impulse

responses, i.e., by their indicial responses and weighting functions. Because

the indicial response is the time integral of the weighting function these

two responses are so closely related that only one need be used in most

dynamic response assessment procedures. The weighting function is superior

when emphasis is placed upon response to impulses, short pulses, and initial

conditions. The indicial response is most suitable for response assessments

for steps, cut-off ramps, and long pulses. When the short time (0 < t < T)

response to cut-off ramps is also of interest, a pure ramp can be added to

the test input inventory. However, because the ramp response is just the

integral of the indicial response it is, again, seldom necessary to consider

ramp responses in detail apart from the closely related weighting function-

or indicial response. The key inputs from Table .10-2 are, therefore,

impulses and steps, sometimes delayed, with the ramp being useful occasionally.

In terms of system response the corresponding quantities are related, for a

general input-output set x(t), and y(t), by a transfer functinWy, the

weighting function (system response to unit impulse input) is,

wyx(t) N O[yx(s)] = Q[Ylo) ( 6)

the indicial response or indicial admittance (system response to unit step

input) is,

Iyx(t) rt Wy(X)dX = [ (10-7)'

-and the ramp response (system response to unit ramp input) is:

T t Tsp,-1 w. ( s)V J )dXI 2  (10-8)
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In the case of initial conditions or of impulse functions applied so

as to represent portions of the initial conditions, it is impossible to

distinguish these from inputs once the proper substitutions have been made.*

'For this reason it is unnecessary to discuss these "inputs" separately.

The next of the general deterministic inputs to be considered is the

power series in time. As should be evident from 'Table 10-2, this type of

input is a convenient catch-all for a wide variety of physical effects when

it is desired to examine particular responses rather than an ensemble. Power

series are also convenient for the description of the average effects of

random input time functions which have stationary statistics about a

time-varying mean. The random fluctuations about the mean can then be

treated separately as a stationary process.

When represented as a power series in time, an input is described by

a series:

N
x(t) = a 0 + ait+ a2 t 2 + • + aNtN E antn, O< t<T (10-9)

n.= 0

The derivatives of x(t) are then,

,dx 3at 2  N-i1 N
- = al + 2a2t + 3a ... + Ea = at-

2 3 +Na~t nt 1
n-P

d 2  a2 + 6  t + 12a4t2 + + N(N-1)a~tN2  E n(n-1)antn 2  (10-10)

dt2  n=O

dix N N1( ) [n (i 1)]antn '  N i.,an tn -i

dt n= n=i

The constants, an, may be derived from theoretical considerations or possibly

from physical limits (e.g. target maneuvers with, maximum load factors), or

*J. A. Aseltine, Transform Method in Linear System Analysis, McGraw-

Hill Book Co., Ic.,, New York, 1958, pp. 29-30.
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my simply be the results of curve fits to empirical data (e.g. a represen-

tation of a short segment of terrain). In this case a Maclaurin's series

equivalent of Eq. 10-9 is useful:

x(t) =x(O) + t t:O + d x +dt It=o 2 dt 2 Lto 3! dt3 lt=0
(10-11)

+ + tN .x +
+ "+N! atNlt__O

For most inputs represented as power series in time, this approximating

series is valid only for very restricted intervals. For convenience, the

interval can be taken to start at t = 0. Because the primary concern in

response calculations for power series inputs centers on the system steady-

,state behavior, the system transient resulting from this selection of a

distinct time origin is ordinarily of secondary interest compared with

the steady-state response. When the transient is of significance, other

input forms, such as steps and ramps, are still more convenient for

assessment purposes. Consequently only the steady-state facet of the

system response shall be discussed here.

When a generalized input, x(t), is inserted into a linear system having

a transfer function Wyx(s), the output y(t) will be, given by the inverse

transform of

Y(s) = Wyx(s)X(s) (10-12)

As shown in Chapter 2 (pp. 2-21 to 2-22), the inverse trehsform of

the steady-state response is:

o)3,(. +I. I + W - 0 dnx+..

y(t) wyx(o)x(t) + Wyx(O)k(t) + W xO)R(t) 4W. + _n

= C0x(t) + C1A(t) + C2(t) + ... + Cnd + (10-13)

i dtn

The primes denote differentiation with respect to s in the first expression;

and the general output response coefficients Cn are used to replace
dnWyx(S) in the second expression. •The discussion -in Chapter 2 which

ndsn s=0
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follows Eq. 2-42 is also applicable here. The reader will recall that a

convenient method of calculating the Cn in terms of the polynomial

coefficients of the system transfer functioi was presented there. It

may also be recalled (from Section 2.6) that the output response coeffi-

cients, Cn, can be interpreted as time weighted moments of the weighting

function, wyx(t) = 1'l[Wyx(s)], i.e., that

I~~~ Cn =I- 'x()n  ds sO =  -)n r=TWyx(T')drn- (10-14)

n~dSn fn~

.The final category of deterministic inputs from-Table 10-2 to be

discussed is the periodic varietyi Strictly speaking, a periodic function

is one which recurs or repeats itself, with somd-period T, over all time, i.e.

Because the time origin is indefinite and the time span infinite, such

functions do not generate transient terms in the system output response.

They are, however, suitable representations for a large class of flight

control system inputs which are recurring in nature and can be thought of as

having no distinct time. origin. The natural way to describe such functions

analytically is with the familiar Fourier series, which provides an expansion

of x(t) in terms of trigonometric functions. If a function x(t) is periodic

with period T, as in Eq. 10-15, then the Fourier series expansion will be:

x(t) = a 0 + F (a n cosc nt + bn sin ant) (10-16)
n=1

2n
where o n ab -=- n i ; n = 1, 2, 3,...

1' T/2
ao = x(t) dt

fT'/2

2, T/2
an--T - x(t) cos nt, dt

_/2

2 T/2
bn " -T/2 x(t) sin qit dt
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Alternative formns ar:

x(t) = cn cos(ant - (10-17)
n=O

where
b

or

Mn =cn cos *n, bn =cn sin *n, aO= c0  0 =O

and

x(t) = a a e (10-18)
n=-oo

where

an -Jb n  an + jb n
an 2 2 o 2 aO

The response to a periodic input involves the system frequency response

transfer function, Wyx(jm),i where:

(WyxO) = Py (S)I S= IW (o)I 1W~(W =ReWYxc(jD)] + j Im[WYXjai)]
(10-19)

The system output y(t) for an input x(t) expressed as a Fourier series in

terms of Eq. 10-16 is then:

t [(anRn + 'nIn)cos (bt + (bnRn anIn)sin %t] (10-20)

n=0

where
Rn =R[Wx(jncuo)] and I01= Im[Wyx(inco)]

When x(t) i givenby Eq 10-17, the corresponding output expression becomes:

y(t) u IWy4 inob)Icn cos [kt - n + 4 wyx(inm0)J (10-21)
n=II.
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fuwtlo of outecs wre called ruoks %ihr41A~trci, 2(j). (&wi Ales~ix Z,

A real micd wnactiom of bo. the stqle point, p and tw,, ts 15 caUed

& n ., o stochastic, process.

x = W(- t) (10-22)

This definition is broad enough to include functions which we do not

ordinarily, think of as "random." Take, for example, a sine wave whose phase

angle is determined by chance:

X(cp, t) = sin(qt + () (10-23)

This is, of course, a deterministic function of time once the phase angle is

chosen. Actually, a random process may be one of four things:

1. a family of random time functions (f and t variable)

2. a single time function (t fixed, t variable)

3. a random variable '( variable, t fixed)

I. a constant number (Q fixed, t fixed)

Ordinarily in considering random processes, the first of these numbered
categories will be the one of the most interest, but functions from the other

categories may well be used for illustrative purposes.

The members of a family of random processes which 0:i arise in

the same way are cal-ed an ensemble. If Xn(-t) is considered to bet a
typical member of such an ensemble, where we now omit to note' the ,ftic-

tional dependence on the sample point, then Xn(t) itself could possibly

be thought ;of as a deterministic function of time. An analytical expression,

e.g. some series, could then be found which approximates Xn(t)'arbitrarily

closely over a given time period, -T < t < T. For another random signal,

XM(t), which arises from the same physical source, an analytical exp-ession

derived on the same basis as that used in characterizing Xn(t) might be

entirely different, even if Xm(t) were simply a section of Xn(t) taken for a

time period other than -T < t < T. For this reason any attempt to describe

a truly random input as a meaningfu and typical function of time is doomed

at the outset. Attention must therefore be given to the ensemble of

functions, X1(t), Xn(t), . . • , Xn(t), . . • , which stem from common causes,
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d *-- aM7 Co t (f4 Is, no- or less 1%'YPIl m of abe msele than

au other me er. The behavior of the ,eseable, I(t), -nst then be

-described in ters of aversees of one sort or another. Averace views

are substituted for a piecise knowledge of the nature of the signal

variation with time. These remaks ,are the intuitive essence of what

is meant by random signals and their analytical treatment.

The most fundamental averages are probability density functions.

Consider Fig. 10-2. Illustrated there are a number of members of a family

of random functions of time which comprise an ensemble of random processes.

X(t) • I

X21 t X3(t)

I I

00 t, t2

Fig. 10-2. An Ensemble of Random Processes

At any given time, tI, the probability that one of the functions X(t)

will be greater than x, and smaller than x + .x, can be computed in a

direct arithmetic fashion. For an ensemble with N members,

INo. of functions X1(tl),X2 (tl), XN ( t )

Pr[x<X(t) <x + at t=t 1]= which have, values between x and x + AX

(10-24)

When the amplitude interval Ax is very small this probability will be roughly

proportional to &x, so:

Pr < X(t) < x + 6x, tl] " P1 (X, t)VAx (10-25)

pl (x, I)N is the first probability density function for a finite ensemble.

It will 'depend, in general, upon the total number of functions in the
I

ensemble, the value of x, and the time tI at which the measurements are made.
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ft be or amy practic- z.e ; a n.- todcc ribe the aversee WaWItie

r eharecLeristic -o a typimcl SIgr l, the number or mnea in the ensemblc 1U.t

be sufficicntly large so that p1 (x, t] )X is, not mtcrieiUy changed when the

ensemble is made even larger. This factor can -be taken into account, and. the

"roughly proportional" restriction can be removed if the first probability

density function is defined as:

pl(X, t 1 ) = Lir Number of values lying between x and x + A (10-26)

Ax-.-O

When the probability that X(t) lies within a range from x, to x2 , at

time tI, is desired, the density function is integrated over the range. In

general:
Pr[xI < X(t) <xV, tl] =fxx2,p(x, tl)dX (10-27)

If the range from x1-to x2 *s extended from -w to +4., the probability

that X(t) lies within the range becomes a certainty.

Pr <.X(t) < 0, tI = . p 1 (X, tl)dx = 1 (10-28)

When it is desired to find only the probability that X(t) is less than

x, at time tI,

Pr[X(t)< x, t Z] fp 1 (x, ti)dx = P1(x, tl) (10-29)

where P1(x, t) is the first probability distribution function. It is an

alternative measure of the amplitude characteristics of a typical signal

X(t), and has the properties:

PI(- , tl) = O,

PI(., ti) = 1 (0-30)

dP 1(x, tj)= P1 (X, tI)

dx
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Value or sow- arittrery 'tunctio, t[x(t1 )J, of the randvia signal X(t) Is

desired. The averagof4 t)J cain be -compu .the uua ip*ybyffrmt

finding the sum, of -a large nUmber of observed valuesPfor '[X(t1 .)], and then

dividing, by the total number of values. The fraction of the values of X(t 1 )

which lie between x and x + dx ispj (x, t1 )dx; and the valie of f[X(t)J

when X(t) lies in this range is Just f[x]. Consequently, the fraction of'

values of X(t1)] which correspond to values-of X(t) falling between x and

x + dx is just f p,1 (x,, tl~)dx. The average value of [X('tl)l can' then be

found by summing these fractions over the entire range of values for X, or:rif
Average of f[X(t)J = Ejf(X)] =J f(x)P1 (x, tl)dx .00-30

The notation E [ ]means itexpected value" or average. The averages where

f[X(t1:)] is Xn(tl) are particularly important. These are the moments of the

distribution and have the form:

mn(tl) = E[n(tl) I=_xn p1.(xi tl)dx (I-3)

The three lowest order moments are:

Zero-order moment: mO = 1 (10-33)

First moi fit,: ml(tl) = .,X p(x, tlf)dx =,;E[X(tm)] (10-34)

Second moment: m2(t1) =f x2 pr(x, tm)dx E[x2(tl)] (10-35)

The first and second moments are interpreted as the arithmetic mean (usualy

called simply the mean) and the mean-square values of the typical random

function X(t) at time tie

If the mean value is subtracted from all'values of X1(tI) in the

ensemble, the moments derived frt the, results become central moments. Thus:

: nt)= EFX(tl.) - m1(tI) f x - m1(tl)] n 1 x ~x i-6
[ nPl(X tl)x (10-36)
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TIM first central =ent, p (t 1 ), is zero. The seccsid centwl. Kivnt iz:

= M(t 1) -IM 1(t,)]2  (10-37)

= Z (t )  - 4x(tl)14(l i h vain e tc ) , 2. -ntti)

gi2(tl) is the var.iance, [act1 2 . 1t' is a measure of the average alternating

fluctuating power in the signal:. In terms of the' density function, [12 (tj) is

a measure of its width about the mean. Similarly the third moment, 43(tl),

gives an indication of the skew of the density function. The square root

of the variance, is the standard deviation, a, of the distribution for the

ensemble X1(tj), X2(tl), - - - , Xn(tl), • .• When the mean is zero the

variance and the mean-square are identical.

In general, not only the first probability density and the dis-

tribution function, but also the expected or mean value, the variance

and other "statistics" of an ensemble of stochastic processes may depend

on the time of observation. This is suggested in Fig. 10-2 where clearly

both the average value wd average fluctuating component of the signals

are smaller at t2 than at 't1•

The first probability density function together with the moments and

other averages derived frown it provide information about the expected

values of X(t1 ) that will occur on the average, and about the probability

that various magnitudes may occur. However these quantities give no

information concerning the time scale in which the values might occur./
To rectify this situation a second probability density function must be

defined. The second probability density function, P2 (xl, tl) x2, t2),

when multiplied by dx I dx2 is the probability that X(t) will be within

the bounds x, and x, + dx I at time tI, and that this same X(t) will be

between x2 and x2 + &x2 at time t 2, i.e.,:

Pr[xI < X(tl) < x I + dx1 ; x2 < X(t 2 ) < x2 + dx2 ]

=.p 2 (xl, t x2 ,t 2 )dxdx2  (10-38)
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The eorept is ilrztrated in Fig. 10-3. ?he seco probbility density

function provides the means to find average values- such as

Average [ X"> Wxt )J.

Average [X(t,)X( t)] E[X(t,)X(t 2 )] =j x, p (x, ,t,;xv,2)dxldx 2  (10-3)

This average will be-a function of t i andt2. Whent I = t2 the second

probability density, p2 (xl, t 1 ; x2IO tI ), is just a product of the first

probability density functions, p1(xC1 , tl )p1 (x2 ' t1 ). The expected value

E[ X2 ] then becomes simply the mean-square value or second moment, m2(t 1 ).

' dx

X(t) N

Xl

0 tt t

Fig. 10-3. Illustration for Sbcond Probability Density Function

Higher order probability density functions are also defined, followirj

the -pattern established above, as the fraction of the ensemble members that

have values which lie within given ranges at respectively given times. Tb

completely describe the random process all of the probability density

functions mu.st be defined. Stated in another way, the process is defined in

successively greater detail the higher the order of the known probability

density functions. Each lower order density function can be derived from the

highest order function by a succession of special cases, so the degree of
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4.eftled knovledge about the coplete process is incorporated in the highest

V order density function which is available.

In the above discussion, as we have noted, the density functions -and

averages derived therefrom all may be functions of the times of observation.

Howeverin many applicatIons the underlying mechanism which generates the

r%*om function does .not vary with time, or can be considered to be time

inveriAnt for the time periods of interest in response calcul.tions. The

time signals actually measured as physical manifestations of the underlying

process-my not reflect this time invariance property directly because of the

kinematics of the meadurement situation, but transformations can often be -made

to.find time signals -(reiated to the actual signals measured) which do. When

,these circumstances apply, the probability density functions ill" not depend

upon the observation times themselves, .but rather only upon time differences.

For' the first probability density function, for example, the same function

would be obtained regardless of tha time when measurements were taken.

p l(x, t 1 ) would then be equal to pl(x, t 2 ), so the time dependence would no

longer be present. The first probability density function would then be

simply p1 (x)- the second probability density function becomes p2 (x ,x 2 ,c),

where r - t2 - tj, ete. Whei .all the statistics describing the ensemble of

time functions are not dependant upon the absolute times of observation, the

random processes are strictly stationry. As a practical matter, however,

it is usually impossible to. determine if this is the case. If it can be
shown, for example, that the first and second probability density functions

are not dependent upon the time of observation, the random process is said

to'be stationary of order two. It often happens, that it is only shown, that

the process is stationary of order one, Aid, t-Zt the autocorrelation function

(defined below) depends not on tI and t2 but. only on r = t2 - tie We then

say that the process is wide sense or weakl stationary.

When the statistics of the ensemble of functions, X(t), are independent

of the absolute time, an alternative possibility for finding averages exists.

Instead of averaging in the conventional arithmetic way across an entire

ensemble'of functions at fixed times one could consider Just one member of

the enseAkle and perform averages over all time. Such averages as
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xt)T -- X(t)dt - the mean value (10-40)

Lim. 1
T-s-co x?(x).dtt)Xthe mean(-square)val (10-If2)

T 24

' would -thenb the.tm-:avera vieA of" h ensemble aVerages

~ m~, )] rspetivly The last time

apverage here,1 Ps alled'the.iutocorrelation function.*

-. , A6 apractical miatter.stationarity for the time averages requires only

that aver aging time bc' suifficiently -long - so that the results obtained would

'be su~statially unchanged- if it were made stil longer. The practical
* equivalent to the averaging time for ensemble averages wq~uld be that the

number of. signals obse'rve6d .be 'sufficiently. gr~eat -so that the results are

substantially unchangedwhen even more6 signalsLare -added 'to the ensemble.

(This, however, does not assure stationarity for the' ensemble.)

The mosA extensive applications of the 'randokaiziput characteristics,

dis~cussed above, occur-~when time'averages and eptsenble -averages ar6 Aequal,

.e., when the random prociess is ergodic. Whether a givein physical process

*is. ergodic or not is very difficult to" show, in general. C'onsequently.,

when processes are stationary,(a necessary but not sufficient ,69ndition

for ergodicity) and the lower averages ('eog. mean, mean.square, etc.) appear

to be equal, ergodic properties are often assigned .to ihe physical situation

by hypothesis. Clearly, the process 'may be ~ergodic for b.rae:. statistical

*The asterisk notation in the autocorrelation function indicates
that X*(t) is the conjugate of X(t). Since X(t) is a real fncetion this
may seem superfluous. However, X( t) might be expanded in the complex 'form.
of a Fourier series,) and the conjugate would then be required when

4 working with the series representation.
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parameters and not for others. With the hypothesis of ertodicity, tim

7 averages are used interchangebly with ensemble averages, and the statistical

.(probability density, functions) and moment properties can be determiued from

either averages performed on an ensemble or time averages performed on a

single-member of 'the ensemble. This is an enormous practical .advantage when-

data must be obtained from physical measurement. The assumption of

ergodicity is also helpful-from the theoretical standpoint since it tremendously

simplifies analytical work. However, theoretical treatments of non-stationary

random phenomena, while complfcaed,- are now well advinced, so the major

practical impoitance of ergodidicty currently resides in the simplifications

introduced in measurement. In any event; attention from this point on will

be confined to random input descriptions which, as a practical matter, can

be assumed to possess .ergodic properties forthe 'time periods of interest.

When the time functions are ergodic:

* U.

-X2 t) Y E[x2(t) x p(x)dx =i

(t E [X2 (t) xn p,(x)dx m2i

and

X*(tX~tTY E[.X'(t)X('+,e) =fxj 1 2 p2 (xyx2),r)dxjdx2 =Rx(,r) i-4

*Conditions, for' the 6rgodicity of the more conmnony Interesting
statistical paramiers are'sunDnarized in A. 'Papoulis, Probability,
Randah Variablefs, arid Stodhastic Processedi, McGraw-Hill Book Co.,
Inc., New York, j965-
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Ni er order avcrages could also be ade to this list, but these

are seldom used in practical calculations. With the functions defined thus

far, it is possible to compute both .aean and mean-square values and, for many

cases of practical interest, the first probability density function may also

be available. Thus a good indication of the response characteristics, on the

average, can be, found, and the probability that certain values of various

signals will occur can be assessed.

From this point on we shall designate a function of time which may be

either a random process or a deterministic periodic signal bY a lower case

letter.

For a stable, constant-coefficient,, linear system with d weighting

function w(t) the autocorrelation function of the output .repponse y(t) to,

an input x(t) having an autocorrelatiii function Rxx(T) is:*

Ry(r) =f"/l w(l)w(7)Rx(,+ X- y)dyd) (10-45)

Thus the output signal autocorrelation can be coputed from the input

autocorrelation from what amounts to two convolutions" with the system

weighting function. Because the mean-square value of a stationary time

funcA';on is given by its autocorrelation 'function at --O, the,mean-

square output vill be:

) Ry(O) = w(X)w(y)Rxx(x - 7)d4dL\ (10-46)

Integrals of this nature are often awkward to work with, -whereas their

frequency domain equivalent is 6onsiderably*.simpler. To proceed into the

frequency domain requires the definition of Rcr_ spectral density functions.

For either periodic or stationary'random time functions this is here defined

as four times the Fourier cosine transform of the autocorrelation function,
viz.: .

;x(W R(,r)cos tudr (10-4e7)

*H. M. James, N. B. Nichols, and B. S. Phillips, Theory of Servo-

mechanisms, McGraw-Hill Book Co., Inc., Now York, 197.. .. .
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The autocorrelation function is also a Fourier .cosine transform of the

tpower spectral density, i.e.:

R =x( ) tix(f)cos fdf Lx x(o)cosad (10-48)

The mean-square value of x(t) is given in terms of the power spectral density

by:

x?2 (t) = 9J 0(f)df txfd

(10-49)
= •x(C~dW = Rxx(O)

The factor of four in Eq. 10-47 arises from the desire to-have the

mean-square value be the integral of the power 'spectral density over all

positive frequencies. This usage agrees with James, Nichols, and Phillips

and with Rice.* Others use a factor of two, which is compatible with having

x2 (t)- be the result of integrating Oxx(f) over both positive and negative

frequencies.

Analogously to Eq. 10-44 we can define a cross-correlation function,

R'(v), between two variables x(t) and y(t) as a species of average:

x*(t)y(t + ) = Efx*(t)y(t + )]

li ur T (10-50)

-0- IT x*(t)y(t +)dt

If X(t) is the input and y(t) is the output of a linear, constant coefficient

device such that

y(t) = j w(,r)x(t T)dr j w(t - .)x( )dT (10-51)

*S. 0. Rice, "Mathematical Analysis of Random Noise," originally

published in the Bell Systems Tech. J., Vols. 23 and 24, reprinted in
N. Wax (ed.), Selected Papers on Noise and Stochastic Processes, Dover
Publications, New York, 195 .

10-28



tXT() w(u)Exx(r - u)du = R,(-T) (10-52)

The cross spectrl density isoagain proportional to the Fourier transform

of the cross-correlation function

txy(jp = 2Jf R,(T)e ' j = d (10-53)

and the cross-correlation function can be f6und, by inverse Fourier transforming

the cross spectral density.

Rxy('T) = f 0 ,y( j)e JC" dw (i0-54)

Finally, if W(Jw) is the frequency response transfer function:

oxy(@c) = W(cJD) @(o) (10-55)

An instructive way in which to approximate a stationary random process

is as a sum of a large number of sinusoids comprising the Fourier series

approximation to an arbitrary function in the interval -T/2 to T/2. (See

Eq. 1O-18.)

x(t) =n eJ n t  (10-56)

From Eq. 10-42 the autocorrelation function will be:

Lim 1 fT_ _ _ _

_ T--' ET- x*(t) x(t + )dt = X*(t) x(t, -+)

L am n ak e dt' (10-57)

n=-o k-oc cke T-o b T L0Tf ei(Wka ) dt

n=-o k. 00_
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The quantity in brackets:

F TT

= ---- --- 2T. 0o G; %k' [J¢% "'n _T -

Lim _ f1 T ejt-jw n t t  1 O=k
T--co 2T

Therefore:

R ( ) =ak,12 e j ft (10-59)
k=-oo

ZJOkT J"2 an-jbn an+jbn Cn? e + e- ~'
But since I an 12 % I= COS Ok

. '- RXX )- C+ 2 cos (I0-60)
n=1

Consider now the power spectral density of the function x(t). Sub-

stituting the expression on the right hand side of Eq. 10-60 in Eq. 16-17,
20 0 Cn 2 cs

Oxx(W) = CO2  cos cm dt + 4 - J cos cos ar d' (10-61)

f n=1 0

The evaluation of this integral, is sonewhat circuitous. The Fourier trans-

form of the delta function is identically unity), so that the inverse

Fourier transform of unity must be the delta function, i.e.,

f (t) e-Jt dt = 1, then 1 if (1) et d= 8(t) (10-62)

Consequently,
j~~t..==  e~..4ia, -(o,.+)

f (e a° ft) e dt = e dt 2-::(o)- u) (10-63)
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Fror the trigoncimetric identity,

Co0%T Co0, anY os rO T(% - cD). + cos T (%~ + to)j 0i-64i)

both the cosine and the delta function are-even functions so,

~cos aT cos d -T fcos (% - w)dT + f Cos (z' + W)dT:'

1f e + e d'T e- +*2 2

= j{8cLf 0- ) + B(w, ru + 6(%~. + (U) + a(-d~ )

.Finally, therefore, the power spectral density of 'the function x(t) is:
0

,xx(to) = 4v c02 r(w) M + it cn [8( -b w ) + 8(co + %,)] (0-66)
n=1

This function may thus be seen to represent the distribution of the harmonic

components in x(t) with each component here proportiona'l to the square of

the amplitude coefficient in the original Fourier series.

If each-wave in the original Fourier series were a vol1;age, the power,

at that frequency, dissipated in a unit resistance would be proportional to

the square of the voltage, hence the name power spectral density.

The first probability density functions, autocorrelation functions,

and power spectral density fuuctions for a number of periodic waveforms

have already been presented in Table 10-3.

We next consider the probabilistic description of some particular

random processes.
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10.4I ANALYTICAL -ACIPIN D CAALOG
OF SPECIa RANDOK PROCESSES

From the discussion above it should be apparent that the random

inputs listed in Table 10-1 must be characterized as autocorrelations or

power spectral densities if even minimal information (mean-square values)

is to be obtained about system response to these inputs. If more response

information is required at least some of the lower order probabil-ity density

functions are required. Even if these are known, however, the probability

density functionis for the system output are difficult to find unless the

amplitudes of the random signais are characterized by a Gaussian or normal

distribution. (See Appendix B.)

Table I0-4 shows a number of the more interesting random processes

which may be used for describing automatic flight control comnands and

disturbances. In most cases a typical segment of the random process is shown

together with its autocorrelation function and power spectral density.

A random binary transmission is the signal generated by abstracting

the result of a coin tossing experiment whose outcome may change at intervals

of Tsee, Calling heads +1 and tails -1, so that short sequences in which

the sig~nl is'unchanged from toss to toss could occur, but that long ones

are unlikely., and then shifting the signal along the time axis an amount, e,

where c is equally likely to take any value in the interval 0, T, the result

would be-as illustrated in item 1 in Table i0-4.

"Boxcar sequences" aie generated by taking positive or negative steps'

whose size is;determined in some random way at intervals whose statistics

are also prescribed. There are at least three interesting cases.

There is a boxcar sequence, item 2 in the table, in which the axis

crossings are always T sec apart) as in the random binary transmissionj but

in which the magnitude of the signal at any time is a random variable. If,

however, the mean square value here were one, this signal would have an

autocorrelation and power spectral density identical to the random binary

transmission. This serves to emphasize the fact that the autocorrelation '

function and power spectral density are not specific to a particular time

function.
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Another type of'boxcar sequence is one with random amplitudes and in

which, the intervals during which the signal is constant -have a .uniform

distribution of lengths in the interval O T. See item 3 in the table.

The third boxcar sequence of interest, discussed below, depends for

its description on a time function which comprises a sequence-of impulses,
each of weight (area), qi' occurring randomly in time at a constant average

rate. In Appendix B it is shown that the probability of finding a given

number s = O, 1, 2, . . . n impulses in a given interval of length, T, is

then governed, by the Poisson distribution. Such a sequence of impulses is,

therefore, called a sequence of generalized Poisson impulses.. It is also

showh in AppendixB that the probability of finding an impulse in an

interval more than t and less' than t + dt sec after its predecessor is gov-

erned by 'the exponential distribution. The mean interval between impulses,

Tay = 1/p, where P is the "density" of the impulses along the time axis.

The expression for the generalized Poisson impulse sequence is:

Z(t) E qi 8(t - ti? (10-66)
i

Here the ti are understood to represent th . (random) ,times of occurrence of

the ipulses. The manner of choosing the woights, qip remains 'to be specified.

Figure 10-4 shows a typical generalized Poisson impulse seauence in which qi

is a random varicble which may take eithcr positive or negative values.

z(t) r l

0 ti I
Fig. i0-4. Generalized Poisson Impulse Sequence
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If the generalized Poisson impulse sequence is specialized in such a,

way that each qi = +1, i.e. each impulse is a positive unit 1mrpulse occurring

randomly in time at a constant average rate, and this signal is passed

through a linear, constant coefficient filter with a weighting function, h(t),

the result is a random process known as "shot noise." Shot noise, from our

point of view, is primarily of historical interest.* The shot noise process

is illustrated as item 4 in "ble 10-4 for the particular case in which

h(t) F e

A time function called the semi-random telegraph signal is gencrated

by switching from +1 to -1 at times ti which are determinedl in the same way

as the times of occurrence of the Poisson impulses. It is illustrated' as

item 5 in the table.

Next, item 6, take a boxcar sequence in which-the occurrence of the

steps in time is governed by the Poisson distribution. In fact the function

we wish to considtr is ,s imply the integral of the generalized Poisson

impulse sequence, Eq. 10-66. Note interestingly, that, except for constants,

the autocorrelation function and power spectral density f6r this function

are exactly the same as the ones for the quite different s'emi-random

telegraph signal. In fact, the exponential autocorrelation function and the

corresponding power spectral density are typical of many physical random

processes. See also item 10 in the table. In this case, if the amplitudes

of the steps in the boxcar sequence were chosen in such a way that the

amplitude of the original function were normally (Gaussianly) distributed,

it would be quite impossible to distinguish between this process and the one

represented by item 10 on the basis of the first probability density function

and the autocorrelation function or its transform, the power spectral density.

Higher order density functions would be required to define each function in

rore detail in order to be able to tell the difference.

Suais of sine waves are very' important special functions with random-

like properties. This is because in computing and in experimental work

*S. O. Rice, "Mathematical Analysis of Randan Noise," originally pub-
lished in the Bell Systems Tech. J., Vols. 23 and 24, reprinted in N. Wax
(ed.), Selected Papers -nn Noise and Stochastic Processes, Dover Publica-
tions, New York, 1954.'
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it is often convenient to have a segment of a "random process" which can

be repeated and in which the mean-square value and power spectral density

can easily be adjusted to. meet particular requirements. The probability

distribution for the amplitude of a sum of a comparatively small number

of sine waves closely approaches a Gaussian. distribution. Figure 10-5

shows the first probability density function for 1 sine wave and for sums

of 3, 4, 8, and 12 sine waves of equal amplitude. In the case in which

the sine waves have unequal amplitudes the density function does .not

approximate the density function of the Gaussian distribution as well

-or the samk; humber of °sine waves.* It is still amazing, however, how

few sine waves need to be added together to yield a very good approximation

to a random function of time with a Gaussian amplitude distribution. This

is an illustration of the operation of the central limit theorem of

statistics.

For analytical and experimental work, it is item 7 in Table 10-4

which is most important. Item 8 is interesting because of its statistical

properties, but, of course, as a function of time it is merely a (periodic)

sine wave with an initially randomly chosen phase angle.

The next five items in Table 10-4 are perhaps somewhat out of place

since they are defined primarily in terms of the properties of'the power

spectral density' function rather than as time functions.

."White" noise, item 9, is a signal whose power spectral density Ss

a function of frequency is a constant. (The name is derived from the

fact that white light is a composite of all the colors with their

different wave lengths or frequencies.) Our principal interest in white

noise is in connection with the signad at the output of a linear filter

whose input may be an approximation to white noise. (The" nature of the

approximation lies In the fact that white noise,, with a power spectral

W. R. Bennett, "Distribution of the Sum of Randomly Phased
Components," uarterly of Applied Mathematics, Vol. V, no. 4, Jan.
1 948.
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density flat to infinite frequency, is a physically un-ealzable signal,

but if the bandwidth of the noise, is very large compared to the bandwidth

of the filter, the approximation is accurate.)

When white nbise is passed through a first order filter, i.e., one

with a transfer function 1/(Ts+1), the result is a stochastic process

which is typical of a very large number of physical phenomena (see item 10).

Among other things, with a suitable choice of the tiie constant, T, it

may be used as a model for atmospheric turbulence or as a model of terrain

elevation as seen from an airplane in rectilinear flight. White noise-

through a first order filter is, therefore, a signal of particular interest

and importance in flight control system englneering. This is especiilly

true if the signal has a Gaussian amplitude distribution. (See the next

section of this chapter.)

White noise through an underdamped second order filter, item 11, is 'a

signal with a predominant band of frequencies which may give it some

properties similar to a periodic signal. In this casq, the filter has a

transfer function 1A( 2  it s + 1]. As the damping ratio, , of the

filter approaches zero, the ourput of the filter approaches a purely periodic

sinusoidal wave with a noisy bias.

A typical error signal spectrum, item 12, may be simply the result of

taking the difference between two spectra of the type illustrated as item 10.

Finally the rectangular spectrum, item 13, is of interest particu-

larly in connection with experimental or computer work in which the signal

is a sum of sine wav.s. Actually items 10 to 13 may be representative

special cases of item 7 since the amplitudes of the -constituent sine.waves

can be adjusted so as to produce any desired spectral shape. (See Eq. 10-61.)

10.5 PROPERTIES OF RAIDOM PROCESSES
VIT GAUSSIAN APeLI TE DISTRIBU ONS'

The most important stationary random functions both theoretically

and practically, are those which can be described in terms of Gaussian or

normal amplitude distributions. Fortunately these are also among the

simplest distributions to handle analytically.
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Recall (or see Appendix B) that the first probability density

and distribution functions for signals which have Gaussian statistics

are

P1() (10-67)
T3 e

and

PI(X) - + erf (.) (10-68)

where

erf z e dX

It may be noted that the distributions are specified completely when the mean,

ml, and standard derivation, a, are known. In linear systems, response

calculations for the mean, or steady-state value can be separated from those

for the fluctuating portions of the response, so it is -possible to consider

the fluctuations about m, alone. Under these circumstances the distributions

about the mean are pertinent, ml can be taken equal to zero without loss of

generality, and the variance, a2 , becomes simply the medn-square value of

the signal.

When a signal within the .system may be described by a Gaussian

distribution, information about the probrbilities of the signal having

various values, being within certain ranges, etc., is readily obtained from

Eqs. 10-27 and 10-67 and tables of the distribution* once the standard

deviation, a, is known. The simplest probabilities of all to obtain are

those given by the first distribution function directly. These take on,

especially simple forms when low probability Values are considered, since

then the error function can be approximated by:

*See, for example, A. Hald, Statistical Tables and Formulas, John

'Wiley and Sons, Inc., New York, 1952, or M. M. Abramowitz and I. Stegun (eds.),
Handbook of Mathematical Functions, National Bureau of Standards Applied
Mathematics Series 55, U. S. Government Printing Office, Washington, D. 0.,
1964.
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erf z " 1- e- z >> I

Thus, when it is desired to find the probability that a Gaussian distribution
signal is a factor k times greater than the standard deviation,

Pr [x(t) > ka] = 1 - P1 
(k c) t, e k (10-69)

when k >> 1. (See also Table B-4, Appendilx B.),
I

One of the most interesting properties of time signals which have

Gaussian distributions is the fact that for some purposes they can be

thoaght of as a sum of sinusoids. The time signal x(t), as expressed

in a Fourier series with zero mean,

N
x(t) = Ak cos (a kt + qk) (10-70)

k=1

will have a probability density function as N-- which approaches a

Gaussian distribution function if the frequencies are given by ak = k&,

,and the phase angles q: are random and distributed uniformly (i.e., as

in the rectangular distribution of Table B-I, Appendix B) over the range

from zero to 2n. (Recai. Fig. 10-5%) The constants Ak must be fixed at

values to match the power spectral density of the random process. The

power spectral density of the function described by Eq. 10-70 is

N
*XX(WN 2t jA 2 [b (w _-~ + 8 (cis+ w)1 1071Oxx(m) = it , Ak25 (10-70( + )

k=1

This expression represents a series of spectral lines at frequencies c= ±k'
2and with weights ,Ak. In response calculations the same answers will be

obtained using Eq. 10-71 and an ordinary, continuous power spectral density

function 4(w) if A2 = and if N is made sufficiently large.
k

A consequence of surpassing importance follows almost 'intuitively

from the use of a sum of sinusoids to represent a Gkpssian random signal.
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In a stable, constant-coefficient, linear system the steady-state response

to a sinusoidal input is itself sinusoidal, although the amplitude and

phase are, in general, modified. When many sinusolds are used in the

input, they all appear in the output, again with different amplitudes and

phases. Now, if the input phases of the sinusoids are randomly distributed,

the phases in the output waves will still be randomly distributed, even

though phase shifts occur for each of the sinusoids. In the limit, then,

as the number of sinusoids in. the input is increased to come closer and

closer to a normal distribution, the distribution0of the output will also

approach a normal distribution. The variance of the output will, in general,

be different from that of the input because of the change in the amplitudes

of the individual waves. Thus,'in a time-invariant, linear system, Gaussian

inputs will produce Gaussian outputs, and the compitation of the mean-square

output will give complete nformation about the first probability density

and distribution functions of the ou.tput signal.

Besides the interesting and valuable characteristics noted above,

Rice* has presented a number of additional properties of Gaussian random

processes which are useful in obtaining a physifal grasp of the time history

characteristics "of Gaussianly distributed time signals. These are summarized

in Table 10-5.

A useful idealization of a Gaussian random signal has the bandlimited

power spectral density shown in Fig. 10-6. This is, of course, a special

case of item 13, Table 10-4. The corresponding autocorre.ation function is

also illustrated, along with a tabulation of the characteristics given in)

Table 10-5.

10.6 RESPONSE OF Man SYSms TO RANDO1i T U

The effect z a linear filter, or feedback system, operating on a

particular power spectral density, xx(cO), may be found as foll.owa. Lot the

system have a weighting function, w(t), such that the output, y(t), in

response to an input, x(t), is given by the convolution integral:

*8. 0. Rice, "Mathematical Analysis of Random Noise," originally
P "ilished in the Bell Systems Tech. J., Vols. 23 and 2I, reprinted in N. Way
(:ed.), Selected Papers on Noise and Stochastic Processes, Dover Publicatiofs,
New Yor , 1951.
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TABLE 10-5

SOME PROPERTIES OF A GAUSSIAN RANI0D4 PROCESS
OC-IPUTED FROM THE AUTOCORREIATION 'FNCTION,

OR nIE POWER SPECTRAL DFNTSITY

PROPERTY PROM THE AUTO- FROM THE POWER
CORREIATION -UNCTION SPECTRAL DENSITY

Mean Square x2  Rx(O) = a2  c

11 - (o) 1/2 wLx ((0¢) C 1

Axis Crossings 1 = I I.per second NO = -[° 00 -' ,
" ()) r• Oxx(cu)dw

(see note below)

0) 1 . ,(u /.

1/211/f
Maxima pcr 11IjR I 2 1'(
second N6 2 R"(O)' J . u24,xx (w) d.jI f
Positive Crossings Noof level x, or N ) NO )-x2/22  go _x2/22
number o mraxima per = 2 2

second greater than ,
x; x > 2a (See above for No and a) (See above for No and a),
(E.xccedences)

Note: (O) etc.
dr( =

1O-h3
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y(t) =f W(r1) x(t -rl)drl J w,(t - r,) x(irl)dri (10-71).

Using Eq. 1C-4e2 the autocorre1'ation function of the output can then be

written in terms of the input as follows:

Lim dt W(1), x(t-TI)dT1  w(If 2 ) x(t+- 2)dr2

y(t) y(t +
(10-72)

Interchanging the order of the integrations

tYY T- -- ,
(mO'

but, in the limit, the quantity in square brackets may be seen to be the

autocorrelation function, Rxx(1 1 + T - T2 ). Therefore, In the limit:

Ryy(-r) =.dr,1. dr2 w(,cl) w(T.2) Rxx(r,1+ -r -2) (10-74)

Because the autocorrelation function is even,the Fourier transform of

Eq. 10-7h4:

t ~2J' IR,,ec) e-a =r 0*fRYY(Tcos an dr

= 2f d-rf drl fadC2  -jco( 1 " 12) (10-75)

e e RiX(T + TI- T2 ) v(r1 ) w(T2 )

Upon a change of the variable of integration T to (T + T - T2)' the volume

integral breaks up into the product of three independent integrals which my

be recognized as representing the Fourier transforms of w(t), its conjugate,
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and the Fourier transform of Rxx(v). Therefore, we have the important

; relationship in the transform domain:

yy(=O) W(jCO) W(-jco) Oxx() = IW(ja) 12 Oxx(o) (10-76)

where
w( JQ, -f w~t) e-J' dt

and, of course, the mean-squared value of the signal of interest is found

from the formula:

=I Oyy(o)da) = 7 I "W()t 2 0 xx(w)dc Ry(O) (10-77)

Integrals of this type, -evaluated for systems through seventh-order,

appeared first in James, Nichols, and Phillips.* The tables have sincet

been modified in form and extended through tenth-order systems, with

corrections found for- the 17 expression. These are duplicated in a

condensed form in Table 10-6. The higher-order literal expressions are

lengthy, and the integrals can be expressed more compactly in terms of

Hurwitz determinants.t The actual tabulated forms are for the integral

Lia 1 +j ®

I f-- Y(s)Y(a ,-s)ds

1 fJ Y(s)Y(-s)ds (1-78)

1 r- ( d(s) d(-s)
= JU].j. a(s) a(-s) ds

*H. M. James, N. B. Nichols, and R. S. Phillips, Theory of Servo-
mechanisms, McGraw-Hill Book Co., New York, 1947,, pp. 369-370.

tR. C. Booten, Jr., Max V. Mathews, and W. W. Seifert, Nonlinear Servo-
mechanisms with Random Inputs, Rept. 70, Dynamic Analysis and Control. Lab.,
MIT, Cambridge, Messachusetts, Aug. 20, 193, pp. 38-42.

1G. C. Newton, Jr., L. A Gould, and J. F. Kaiser, Anal tica si n
of Linear Feedback Controls, John Wiley-and Sons, Inc., New York, 1957,
pp. .66-381.
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This applies only for stable systems. Note in comparing Eq. 10-77 with

Eq. 10--(8 that

f, j tya)~ f 2 d

S If Y(s)Y(-s)ds ; 1

or Y(Ja)Y(-JeD) = 2

'The factor of two is a consequence of the definition of' the power spectral

density such that y2 is given as an integral power density over only real

frequencies. It is a point to be remembered when using Table 10-6.

An immediate application of Eq. 10-77 is the computation of mean-

squared amplitude for an output quantity in response to an input spectrum,

Oxx(co). This is accomplished by evaluating Eq. 10-77 for Oyy(w) to obtain,

A or the rms, a. This technique allows computation of a variety of

performance indices. Examples include flight paioh deviation about the

ideal profile in terrain following, or the localizer course in an automatic

approach. Design considerations such as rms control surface deflection and

deflection rate dan be studied as well.

Another application of Eq. 10-77 is in the modeling of a command input

spectral density. If inn(w) is a Gaussian white noise source, then a

shaping filter, Gf(Jw), can be "fitted" to yield the input spectrum, oxx(co).

The input spectrum is then given by:

Ox( = lGf (jjO 12 On'w (lO 7

Since Onn(w) is a constant, lGf(iu)12 must have the shape of the desired
input- spectrum. *

*Actual disturbance and command data for automatic flight control system
analyses are sumarized in J. E. Hart, L. A. Adkins, and L. L. Lacau, Stochas-
tic Disturbance Data for Flight Control System Analysis, ASD-TDR-62-3h7, Sept.
1962, and D. H. Weir, Comilation and Anal.sis of MFJO ht Control System
Comnand Inputs, AFFDL-R-6-119, Nov. 1965..
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X(t) y(I) A v. e general ease is the one

-, or or where the canand input is the sum

OXX(W) Oyy(W) of several random signals. For N input

components and one output, the transfer

function characteristic of Fig. 10-7
Fig. 10-7. A Simple Transfer becomes the one shotm in Fig. 10-8. The

Characteris'tic

inputs are assumed to have zero means,

but are not necessarilY uncorrelated. Denote the cross-spectral density

between the ith and kth inputs as Oki(d)). Defining G(jw) as the complex

conjugate of Gk(jo), yields the following equation for the spectrum of the

sum:
N N

-- Gi(jco)Gk(jw)ki(w) - (10-80)
i=1 k=1;

02's, (Lw)) xxW

I, I I1

4)NN(W) 
4S

Fig. 10-8. A Multiple-Input System

When the N inputs are uncorrelated, Eq. 10-80 reduces to:I
N

lE Ik(JW)12 4kk(G)) (0-81)
k=1

If the inputs are simned prior to entering a single transfer block,

the situation would be the one illustrated in Fig. 10-9. In this case

Eq. 10-81 simpiifies to:

*1xx(w) I G1(,w)1 2 " = 0(w) (10-82)

k-
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011'W) C22(w) wN

G+-s ) x 
N 

M

Fig. 10-9. Sumation of Random Inputs

Many randcm disturbance and conmniad input data are well approximated

by the Gaussian probability density function.* With single or multiple

Gaussian random inputs and a linear transfer characteristic (see Fig. 10-7),

the output will also be Gaussianly distributed, so that evaluation of the

mean-square value from the output power spectral density Is only the

beginning of the interesting calculations which can be made. Recall the

previous section.

xemple 1: Following error in a first-order servoehanism

Given a rectangular band limited input spectrum 4rr(w) as the input
to a first-order servomechanism, find the dependence of the mean-
square error in following this input on the cutoff frequency of the
input, wi, and the inverse time constant (crossover frequency) of
the closed-loop system, o c (Fig. 10-10).

Or(j~~ rr(O)  W1i, rM e~) W Cft)

Orrrr(O)

0 W

Or2  1 f 0'(E(s) 1
= R('s) +c

4'rr(0,)0i ____

TCL

(a) the input (b) the system

Fig. 10-10. A Band Limited Input Spectrum and First Order Servomechanism

*J. E. Hart, I. A. Adkins, L. L. Lacau, loc. cit.

D. H. Weir, loc. cit.
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From Eq. '10-77:

2 1 !!C~&O)
e = I i

0

=" 2f-- (Lj(L--ao

rr(0) W2 dca

-2n 1 - - tan-'

The continued fraction* for the inverse tangent is:

tan"1 x = x
I+

+ 4x2

2x2

7+ 

Taking the third convergent as an approximtion:

1 -1tan"  ! 1 x
1-ta x= +2

x2

Finally:

2 <2

•C. D.. Olds, Continued Fractions, Random House, Inc., New York, 1963.
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The moan- square error in following the input is roughily proportional
totemensuaeipuO 2 to the square of the input bandwidth,
O1,j2, and is inversely proportional to the square of the crossover-
frequency, cu2

Example 2: The optm fixed-form adjustment of a first-order
servomechanism with signal and noise inputs

Given a first-order servomechanism with co-Miaiid signal and noise
inputs, what is the best adjustment of the crossover frequency,

cc so as to minimize the error, E(t), in following the desired
pignal r(t) (see Fig. 1-).Note that the injectioni of-the
noise signal. mighit be in the feedback path (measurement noise)
or at the servomechanism error point (amplifier noise) without

* altering-this problem.

Noise

.n(t) Servomechanism Otu
e(t) W6owng

+

a) the system

4R n4r.
r

I NN
______ __ .n

"2+r

b) the signal aiid noise inputs

Fig. 10-11. Minimizing the Following Error
in the Presence of Noise
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The error ini following is given by the expression:

C= r c

Then with a substitution for C(s) the Laplace transform is

e(s) BR(s) -[R(s) + N(s)] s+ U~

or

re(s) =R(s) N*s -Er-+En

Assumaing there is no correlation betwean signal and noise,

Wc~w + - - ~ 
-. 

.:, .c

I~ W(c+ w)1 I (n + o)w + w)Ie

0c r c) + 4)ECc (w)

Then the mean-squared error will be

2' -217

212 Er En re

0 foo

- f Fr( )Er(-8)ds + -L f .s)0-s

where X'2s) f-R
(s r)(s~w

En(s) f2R, we

(.s +n) (s + c)
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Both the following error cmnponents are given by a specialized
. fonn of the integral 12 from Table 10-6, i.e.,

% a2 d1
12 = d

2ao12

For the following errorin response to the signal,

d(s) = dos +d, = '-

o--4 , dal- 0
do sVa +as

a(s), 2 s2 + als + a - 2 + (r + cq)s + rxw

* , a1 =r+wc 'a2 n=c

50 Hr

r (t

S imilarly, for the following error ih responne to the noibse,

do = o , 'd V4 nWCoe

&0  = I1 a, n-4,. w a2  nut

and A 2

2 2(n. )

n +

Caobinihg the contributions to the lean-square following error:

= r2+ 2 - r +

pr- r+ we~ nl -1 w,.
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To find the crossover frequency, w., which minimizes thg,;total
mean-square error, we-ifferentiate the expression for c? with

7 respect to mc, set the result equal to zero, and try to solve,
for c,0

dc2  Er N' =0
C€ (r + Wc) 2  (n + wc) (n +c) 2

or

Nn Rr N/n R/r
(n+ 2 (r + - )2

In the practical case in which c << n

N .1
N •r 2

or

1 R/r
r N/n

bierefore:

r Vr

If, nor, the "signal to noise" is large (i.e., RHI >1 1) and
the signal to noise bandwidth ratio is small (i.e., n.>> r),
then

G c . Rn
r r
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Back in 1951 J. R. Dutilh* conjectured that, in general, the half
power frequency of the servonechanism (crossover frequency) should
be adjusted to the frequency where the coariand signal power is
equal to-the noise power. In this problem, we could set the expres-
sions for the two spectra equal and solve for the frequency, w.

4Rr 4Nn.
2 2 n'2 *2
r + +

or

R/r: N/n
1+- + m

2  2
Sr. n

or again if c << n

r c 2  N"

* •and

7r R

SUnder s~ilar assmptions of sinal to noise power and bandwidth
ratios as above this will become

- R n
V N

*Comment in A. Tustin (ed.), Automatic and Manual Control,

Butterworths Scientific Publications, London, 1951, p. 156.
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10.7 COMMER MMODS

In many practical cases the response of vehicle control systems to

random inputs and disturbances will be determined by automatic computation.

If the calculations are to be performed on a computer anyway, there may be

no advantage to working with the spectral descriptions. Computer methods

of evaluating the mean square, and other statistics, of signals in control

systems, including cases which often arise in guidance problems in which

the system is time-varying, are discussed in Lanning and Battin.* Two

particularly powerful and useful methods are the "transient analog," and*

the "adjoint system." The methods are closely related., with the transient

analog being a special feature-of the adjoint technique. Here, how-ever,

they will be treated separately for simplicity.

For a system with transfer function) W(s), excited by a random process

x(t), the mean-squared output is, of course,

T T y (t)dt 00 Iw) 12 0xx(Cu)dm (10-83)

The idea of the transient analog of a power spectral density, 6X(W), is

based on finding an input time function, xt.(t), such that the system output

response, yt' has an integral square value viiich is the same as y. That

is,

f ytdt Y (10-84)

J. H. Lanning and R. H. Battin, Random Processes in Automatic Con-
trol, McGraw-Hill Book Co., New York, 1,956.

tT. R. Benedict and V. C. Rideout, "Error Determ.ination for Optimum

Predicting Filters," Proc. National Electronics Conferencc, Vol. 13, 157,
pp. 875-887.

B. Etkin, "A Simple Method for the Analogue, Computation of the Mea-
Square Response of Airplanes to Atmospheric %urbulence," J. Aerospace
Sciences, Vol. 28, No. 10, Oct. 1961, pP. 825-826.

R. Magdaleno and J. Wolkovitch, Perfor.ance Criteria for Linear
Constant-Coefficient Systems with Random Inputs, AS])-TDI.-6. 0, Jan. 1965.
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where the transient response yt,

ttf ('[)xt(t-T)d = w(t--r) x(-)d t >0(O -8)
f0 0

To find the relationship between xt and tx required to make this so

we shall resort to the real multiplication, real integration, and final

value theorems, of the Laplace transformation (see Table 2-1). Using the
2real multiplication theorem, the transform of yt will be

c+jCO

= f Yt(s -)Yt()dX
a-jCO

2 c~f+jGO (o-- 1 f W(s _ X)Xt( s_ )W(I)Xt (X)d (10-86)

c-Cj

From the real integration theorem,

[[oyt~dl JQ KtI

C+jO*

a 2 j W(s-X)Xt(s-X)W(X)Xt(X)dX (10-87)

c-jCO

The final value theorem is subject to restrictions on W(s) and Xt(s)

which insure that the integral square output has a finite value. As

a practical matter this requires the system to be stable and Xt(s) to

be analytic on and to the right of the imaginary axis, thereby allowing

c to be zero in the contour int.Gral. The final value theoren can now

be applied,
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tO 1
Lim t Lim J - t-.-d Yt

00

1 f W(-X)W(o)Xt(-X)Xt(X)dX (10-88)

Changing the variable X to Jw,

f yt2 dt 1 W(J)(CO f)t(WCZ
2, J w(j) 12Xt(j(,)l 2 C (10-89)

Comparison of Eqs. 10-83 and 10-89 reveals that the two integrals will

be the same provided that" the transient analog ifiput, xt(t), is chosen

so that

Xt(jO)xt(-jcNO 4 xx() (10-90)

Thus, the transient analog, xt(t), appropriate to the power spectral

density )xx(w), must have an energ pectraO, density which is the same

function of frequency (except for the units) as half the power spectral

density of the random input.

The unit delta function is the t ansient analog of a white noise

spectrum with 2 units of power per radian per second. If the random

input of interest is considered to be the result of passing a unit white

noise spectrum through a linear filter with a Fouier transfer function,

Gf(jw) (see Fig. 10-12 and recall Eq. 10-79), then the transient analog
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of the random input of interest is the cutput of the same filter excited

r by an impulse with weight I1%F2.

White Noise Random Process

Unit Power Orr(W)
per rod/sec

Impulse Transient Analog

8(t) rt(t)

Fig. 10-12. The Transient Analog of a; Random Process
Formed by Passing White Noise Through a Filter

For constant coefficient situations the transient analog technique is

all that is required for the computation of integral-square transient

responses, and thus the analogous mean-square response. When time

variations become important, however, we need a different approach.

This is provided by the adjoint techniques described below.

To make the discussion concrete consider the problem of determining

the effect of noise in the radar guidance system on the miss distance of

a homing missile. A highly simplified block diagram of the automatic

flight control and guidance system for control in a vertical plane is

presented in Fig. 10-13. (Cf. Fig. 1-5 in Chapter 1.) The block

diagram represents a system which is linear, but with time-varying

coefficients. Even this very simple system is relatively intractable,

and the usual recourse is to simulation. Figure I0-14 represents a

simulation diagram* for the system, drawn in terms of components which

*C. L. Johnson, Analog Computer Techniques, McGraw-Hill Book Co.,

New York, 1956.

G. A. Korn and T. M. Korn, Electronic Analog and Hybrid Computers,
McGra .r-Hill Book Co., New York, 1964.

S. Fifer, Analogue Computation, McGraw-Hill Book Co., New York, 1961,
4 Vols.

A. E. Rogers and T. W. Connolly, Analog Computation in Engineering
Design, McGraw-Hill Book Co., New York, 1960.
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Launch Error
Guidance UOYO :Constant

White Command
Noise F(R) ( adar Nois) K

Scale Filter Vehicle
Factor

T: Initial time to go Motion
(T Miss distance Sno

T-t Target

Time Varying Mane~uver
Geometry f W)

Fig. 10-13. Simplified Block Diagrama for Guidance
of a Homing Missile in the Vertical Plane

White Integrator Il.C.

n(t)

Fig.~~~x x.1.Smlto igrz;Hmn isl



are called "integrators," "summers," and "cocfficient potentiometers."
(We have neglected the usual sign change in integrators and summers.)

From either the block diagram or the simulation diagram and the defini-

tions of the operation of the several components, we may write the

differential equations of the system. Considering only the noise input,

n(t) for the moment for simplicity,

IXl + N4 n(t)

i2 =  + KxK Kx2 -"T t x3 (10-91)

i = Ux2

,The equations for k, x2 , and X3, sometimes called "state variables," may

also be written in matrix form:

- 0 0 xI

+K -K x2 + 0 n(t) (10-92)

k3 0 +Uo  0 x3 0

In general, equations such as Eq. 10-92 may be written in the form:

i(t) = A(t)x(t) + B(t)u(t) (10-93)

x(t) is the n xI matrix of system outputs, U(t) is the m xi matrix of

system inputs, A(t) is the square nxn matrix of system coefficients, and

B(t) is the n xm matrix of input coefficients.

Note that in the concrete example of Fig. I0-Ih and Eq. 10-91, the

impulse responses of the system to a unit impulse n(t) =B(t-z) applied

at the first summer are the same things as the initial condition responses

of the system if x1(z) -.N/ and all other initial conditions (in this case
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x2 and x3) are zero. This is, of course, because with no other inputs

or initial conditions, the. integration of the Impulse by integrator 1

produces a step, or equivalently, an initial condition on the output

when 'the problem begins to run at~t= z. In general, the Impulse responses

of the- system are the same as--the initial condition responses for the

initial condition on the same integrator to which the impulse would have

been applied.

Consider next what it might take to give an answer to the original

question, i.e., the effect of noise on the miss distance. Suppose that

the guidance system noise could be represented by a white noise power

spectral density so that a suitably scaled impulse would be its transient

analog. The impulse. response, w(,t, z) of a linear, time-varying system,

however, is a function of two time variables:

1. The time, z, at which the impulse is applied

2. The time, t, at which the response is measured
8'

Bylway of contrast, the implse response of a linear, constant-coefficient

system is, a function only of the difference in time, r = t- z, between the

application of the impulse and the time at which the response is measured.

Similar to the,-transient analog, the ensemble mean-square response*

at a time t, E[y 2 (t)], of a time-varying system responding to a white

noise input, x, with unit power per radian per second applied at inpLt

terminal 1 continuously from -w to t, is derived below:

Eic() = (z)vyj (t, z)dzJ 2  A(10-94)

where w 1(t,z) = the response in y at time, t, to a
unit impulse applied at time, z, to
input terminal (integrator) number 1.

The ensemble average is the value of a statistical parameter at time,
t, averaged over a large number of trials with random initial conditions
and noise, but all having the same statistical properties. In time-varying
problems, of course, ensemble averages are not equal to timi averages.
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Ecpanding Eq. I0-911 and moving the expected' value operator inside the

integrations gives

(" ft~ tz ~ 1 tx)x(z)x(x)dzx

E [,- ( W1(tz)wy(t)Ex(z)x(X) dzlX (10-95)*f f y
w, , .y1(t, zw 1(t,XE -Xl (')dzk(0-5

" Sincex isaunit white noise

Rytx(z-?X) 2 2 (zX). (lo-96)

".Inserting;Eq. 10-96 into 10-95 gives

• .t'j f -dz(10-97)

Suppose we~ wished to ev4luate. the ensemble mean-squared response using

simulation afid Ed. 10-94. Iy1 (t) Z) mi0it be obtained from direct measure-

ments. If, a unit impulse is applied at time, z, to input terminal 1 ,, the

simulation yields wy1(tz) as a function of t. The variable of integration

irn Eq. 10-911, 'however, is z. It would, therefore, seem necessary to record

a number of i.npu.,se responses for various values of z, cross plot the
results, and integrate the kernel of the equation numerically or graphi-

cally.. This procedire is illustrated in Fig. .10-15. In the ex mple

shown in the sketclf, several simulator trials would be required in order

.to evaluatd E[y(t)]t,,3 and the whole process would have to be repeated

for any other values of t of interest. While it is entirely feasible

" 10-64
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to do this it is tedious and uneconomical. Fortunately, it is also

unnecessary.

The system simulation we should like" to have would' produce Wyl(tz)

as a continuous function of z. The response woLld then be evaluated

according to the formula (Eq. 10-94). The operations of squaring and

integrating the impulse respoise could be mechanized in the simulation.

Then only one run would be required for each value t = T which might be

of interest. Is there such a system? The answer is: yes. It is called

the modified adjoint system.*

Heuristically the basik idea :of' the adjoint system con be introduced

by considering the principle of reciprocity for linear systems. A familiar

example of the reciprocity prinbiple occurs in the thepry of structures

where a concentrated load applied at Point A produces a deflection at

Point B equal to that which would be produced at Point A by the same load

applied at Point B. The nature of the load influences are characterized

by structural influence coefficients, a na),ogous to weighting functions.

'How-does this apply to the present context, i.e., how do we obtain

the same-rosponse, w(tz), in two different ways? One way we already

know: a unit impulse tpplied to the system at time z produces 'an output

at time t given by w(t,z).' Now how do we get/ail output w(tz) at time z

by applying an input impulsedat time t? The direct answer is obvious

enough: measure w(tz) at the original input terminal, apply the imouise

*J. H. Lanning and H. H. Battin, Randn Processes in Automatic Control,

McGraw-Hill Book Co., Inc., New York, 1 76

G. L. Teper and R. L. Stapleford, Adjoint Computer Techniques for a

Homing Missile System, STI T4 241-5), Systems Technology, Inci;, Hawthorne,
Calif., Jan. '1963.

P. M. DeRusso, R. J. Roy, C. M. Closei 'State Variables for Enga.neers,
John Wiley and Sons, Inc., New York, 1965, pp _.n-3 .

S. Fifer, loc. cit., pp. 1052-1085.

A. E. Rogers and T. tW. Connolly, Loc. cit., pp.. 233-216.
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at the original output terminal, and run time backwards. This last

* requirement-is awkward, to say the least, on analog computers! Con-

sequently, to exploit the reciprocity idea it is necessary to develop

a simulator diagram which is related to the original simulator circuit

by a simple -set of rules to be given below. This new simulator setup is

that of the adjoint system. When it is achieved, then the adjoint output

will produce a time history Wy versus z. When squared this produces w2

y
versus z, identical to that illustrated in Fig. 10-15. Then, in terms of

this example, integrating the squared time history from zero to 3 yields
[f tw2(t,z)dzJt=3 in a single run.

In order to understand why the modified adjoint system may operate so

as to produce the desired results, it is necessary to take a modest excur-

sion via matrix calculus. The reader who may be less interested in the

why than in the how--to may skip the next four pages.

Take a system of linear, time-varying coefficient, differential,-

equations of the form of Eq. 10-9" and a closely related system of

equations:-

&(t) - -A (t)%(t) (10-98)

Here to matrix A(t) is the transpose of A(t), formed by interchanging,

the rows and columns of A(t). .If Eq. 10-93 are the original equations,

then the.Eq. 10-98 honogeneous equations are said to be the adjoint

equations. This simply means that they are formed from the original

set of homogeneous equations -*=A(t)x(t) according to the rule which

specifies that the coefficient matrix of the adjoint equations, -AT; is

the negative transpose of the coefficient matrix of the original homogeneous

equations, A.

Form the producta (t)x(t) and take the derivative with respect to time,

d[1 ST- T
[I,-(t)X(t)] I M(t)X~t)+4MtW6(t) (10-99).
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but fran Eq.\ 10-98

&T(t) ' [!t(t] = Tt[AT(t)]T -ao.T(t)A(t) (10-1oo)

Substituting this resul.t and the expression on the right hanid- side

of the first of Eq. 10-93 in Eq. 10-99

dtt'''J('10-101)

\T

Integrating Eq. 10-101 fran t1 to t 2 ,

2

MT(t 2 )X(t 2 ) = M(t1 )x(t 1 ) + j a(t)(t)U(t)dt (10-102)
fti

it is ordinarily possible to define the starting time t such that x(t1) =0O,

thereby'simplifying Eq. 10- 102 somewhat. Also, the boundary conditions on

a(t) are arbitrary, so that when we are interested in one particular output,

ki(t2), all the comhponent6 Of M(t2) -except Qi(t2) can be set equal to zero,

0 alt

01 (t 2 ) (1,o;-13)
I,1 i=j

Eq. 10-102 can now be written as

\2

Xi(t 2 -) ft T(t)B(t)u(t)dt(i o- 104)

With a1(t 2) fixed everything is knovm in Eq. 10-104 except a,(t), which is

the output of the adjointb system. To-make the boundary conditions equal

to initialtconditions we substitute a now time variable t t2 -t and1i--l

= (tl C1 0-t
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rewrite Eqs. 10-98 and 10-104 in terms of this new independent variable.

Then they become,

UM4 -t) AF(t 2 -~t*)M(t 2 -.t) (10-105)

0

xi(t2 ) - ((t2-t*)B(t2-t*)u(t2t*)dt*

2-ti

- ft~2 T(t2 -t*)B(t2-t*)u(t 2 -t*)dt* (10-106)

where 0 i#J

(0J)t*=o (10-107)
0 i=j

Equations 10-105 and 10-106 are the equations of the modified adjoint

system (modified by the change in the tine variable). Their solution

after the imposition of the initial conditions of Eq. 10-107 will yield
MTA (t2 - t*). All of the rules for the formulation of the adjoint computer

diagram can be derived frm Eqs. 10-105 and 10-106.

The coefficient matrix, AT, in the modified adjoint system is the

transpose (rows and columns interchanged) of the coefficient matrix in

the original system, Eq. 1O-9, and with "tine," t*, in the modified

adjoint system running "backwards," the coefficients are started at their

values appropriate to t=t 2, i.e., t=0. Thus if integrator, i, in the

original system-produces xi frem xi and feeds n integrators via coefficients

aij(t), J =1, 2, ... n, in the modified adjoint system the inputs to inte-

grator i come from J= 1, 2, ... n integrators via coefficients aji(t2 -t*).

This is illustrated in Fig. 10-16. Similar considerations apply to summers

when they are necessary and to the coefficient pots for the elements of the

B matrix. (Actually summers become merely takeoff points and takeoff

points become summers in the simulation of the modified adjoint system.)
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From To To From
Integrator Integrator Integrator Integrator

n- on ) n n - 012 @n

Original System Simulation Modified Adjoint System Simulation
(Homogeneous Equations) (Homogeneous Equations)

Fig. 10-16. The Interchange of Inputs and Outputs
on Integrators and Coefficient Potentiometers

These facts lead to- the following simple rules for simulating the

modified adjoint system, starting with a simulation diagram of the,

original system.*

1. The outputs of each summer or integrator in the
system analog become the inputs to that summer or
integrator in the modified adjoint analog; the
inputs in the system aralog become the outputs
in the modified, adjoint analog.

2. The input and output are exchanged on all coefficient
potentiometers.

3. Multipliers used to represent time-va.rying coefficients
are replaced by multipliers representing the same
coefficient as a functibn of the new variable t* =t 2 -

i.e., time-varying coefficients are started at thei.-
final values and run backward toward their initial
values.

*T. S. Durand and G. L. Teper, An Anal:ysis ,of Terminal Flight Path
Control in Carrier Landings, TR 137-1, Systems Tech6nlogy, Inc.,
Hawthorne, Calif., June 1964.
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4. A unit impulse is put into the one integrator or
summer from which the output of interest was taken
in the system analog. Since, however, the integral
of a unit impulse is a unit step, instead of attempting
to generate an actual impulse, a step or initial con-
dition can be put on the output of the integrator, or
summer, but the step or initial condition should not
exist at the output of the integra'or until the problem
begins to run.

5. The modified adjoint impulse response functions are
then measured in the modified adjoint' analog, at the
points where the corresponding inputs in the system
analog were introduced.

6. Components necessary to square, scale, and integrate
the impulse response functions are added as needed.
(See Fig. i0-17.)

Step (initial condition) or ramp responses of the original system may

be obtained by once or twice integrating the impulse responses of the

modified adjoint system at the terminals where the steps or ramps would

have been introduced. Similarly the response to an arbitrary input may

be obtained by multiplying the impulse response at the terminal in the

modified -adjoint ,system corresponding to the point of introduction of the

arbitrary function in the original system, and integrating the result.

This represents the computer mechanization of Eq. 10-106. The operations

are sho-im symbolically in Fig. 10-17.

It is necessary to point out that it is not usually possible to

associate physical quantities with all of the signals in the simulation

of the modified adjoint system. This very likely leads to problems in

the scaling of the simulation which are only overcome by trial and error.

Now, by way of illustration, the drawihg of the simulation diagram

shall be carried out explicif~y in connection with the simple example of

the .guidance of a haning missile.

The simulation diagrwa of the origianl system has already been

presented as Fig. I0-14. Identifying t2 = T, and carrying out the

instructions of the numbered rules above results in the simulation

diagram of Fig. 10-18. Reversing the connections on the integrators

and coefficient potentiometers in particularly straightforward, as is
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Modif id Impulse
4System Response-OWN and

Filter I
Filter Squarer *

Simulation er' .Integrator

a) Computing the Mean Square Response to a White Noise Input

[> Response
Integrator, Integrator

Modified
IO Ad o-nt[', ) Step Response

~System

Simulation
Integrator

Impulse Response

b) Computing Step and Romp Responses

Modified MultiplierrbitraryAdj"n Function
System Impulse- ResponseSimulationI Respons : s lntegrator

Arbitrary
Function
F(t2- t*)

c) Computing an Arbitrary Function Response

Fig. 10-17. The Responses of Interest Can bo Generated
fran the Impulse Responses of the Modified Adjoint System Simulation

I7
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step i
(Inritial Condition) -

Mean Square Response
Random Input

Response,E N~

Squarer

I-t/T

Arbitrary
Function
Response

Target

Maneuver

Fig. 10-18. The Modified Adjoint System Simulation
Derived from the Simulation ,Diagram of the Original System

making the summers takeoff points and the takeoff points summers. Taking

the outputs from the points for th, inputs in the original system and

providing the impulse input at the original output point completes the

diagram'for the modified adjoint ,system. Notice that the factor of

is inserted as, a modifier for N/. This permits the multiplier and

Integrators 4 and 5 to be added to compute the miss distance responses

to th& target maneuver and launch error without any modifiers at all.

This.concludes the discussion of the response of linear systems to

deterministic and random inputs and of system performance assessment in

terms of response quantities.

10-73



SUPPIEM

BIBLIOGRAPHY TO SUPPIEMET

AIRCRAYT DYNAMICS AND AUTOMATIC CONTROL

I. Additional Aspects of Aircraft Dynamics, including

* Steady zolling flight

0 Steady turning flight

0 Internal angular momenta effects

* Structural flexibility

I. M. J. Abzug, "Effects of Certain Steady Motions on Small-
°Disturbance Airplane Dynamics, "J. Aeron. Sci., Vol. 21, No. 11,
Nov. 1954, pp. 749-752, 762.

2. J. H. Blakelock, "Inertial Cross-Coupling," Chapt. 5 and

"Structural Flexibility," Chapt. 8 in Automatic Control 6ft
Aircraft and Missiles, John Wiley and Sons, Inc., New York,
1965.

3. B. Etkin, Dynamics of Flight, John Wiley and Sons, Inc., New
York, 1959 pp. 304-307.

4. W. R. Kolk, "Roll Coupling," Chapt. 7 and "Aero-Structure-
Control Interactions," Chapt. 11 in Modern Flight Dynamics,
Prentice-Hall, Inc., Englewood Cliffs, N. J., 1961.

5. D. T. McRuer, "A Feedback-Theory Analysis of Airframe Cross-
Coupling Dynamics," J. Aerosp. Sci., Vol. 29, No. 5, May
1962, pp. 525-533.

6. B. H. Paiewonsky, The Effects of Engine Angular Momentum on an
Airplane 's Longitudinal and ateral-Directional Dynamic
Stability, WADC TR 56-225, June 1956.

7. H. R. Pass, B. F. Pearce, R. K. Siskind, and J. Wolkovitch,
Topics on Flexible Airplane Dynamics, ASD-TDR-63-334,
Parts I through IV, July 1963.

8. B. F. Pearce, W. A. Johnson, and R. K. Siskind, Analytical Study
of Approximate Longitudinal Transfer Functions for a Flexible
Airframe, ASD-TDR-62-279, Apr. 1962.

9. W. H. Phillips, Effect of Steady"Rblling on Longitudinal and
Directional Stability, NACA TN-1627, 194K8.

S-1



10. W. J. G. Pinsker, A Preliminary Note on the Effects of Inertia

Cross-Coupling on Aircraft Response in Rolling Maneuvers,
R.A.E. Tech. Note No. Aero 2419, 1955.

11. W. J. G. Pinsker, Critical Flight Conaitions and Loads Resulting
from Inertia Cross-Coupling and Aerodynamid Stability
Deficiencies, R.A.E. Tech. Note . Aero 2502, Mar. 1957;
also AGARD Rept. 107.

12. W. J. G. Pinsker, Charts of Peak Ampitudes in Incidence and
Sideslip in Rolling Maneuvers Due to Inertia Cross Coupling,
R.A.E. Tech Note No. 2604, Apr. 1958.

1 3. D. W. Rhoads and J. M. Schuler, "A Theoretical and Experimental
Study of Airplane Dynamics in Large-Disturbance Maneuvers,"

J. Aeron. Sci., Vol. 24, No. 7, July 1957, PP. 507-526, 532.

14. J. M. Schuler, Analytical Study of Airplane Dynamics and Tail
Loads in Rolling Pull-Out Maneuver's, WADC TR 56-403,;
Sept. 1956.

15. J.M. Schuler, Flight Evaluation of an AutomaticzControl System
for Stabilizing the arge Uncontrolled Motions of Airplanes
in Stalled Flight, Cornell Aeronautical lab., Inc., Rept.
TB-1132-F-2, Oct. 1959.

16. R. C. Seamans, Jr., et al., "Recent Developments in Aircraft
Cuwtrol," J. Aeron. Sci., Vol.. 22, No. 3, Mar. 1955,
pp. 145-16.

17. R. L. Stapleford, L. G. Hofmann, J. J-. Best, C. D. Wezeman, and
W. A. Johnson, Transfer :Function Approximations for Large
Highly Coupled Elastic Boosters with Fuel Slosh, NASA CR-464,
Apr. 1966.

18. H. H. B. M. Thomas and P. Price, A Contribution to the Theory of
Aircraft Response in Rolling Manoeuvres Including Inertia
Cross-Coupling Effects, R.A.E. Rept. No. Aero 2654, Apr. 1960;
also A.R.C. R and M 3349.

19. W. K. Waymeyer and R. W. Sporing, An Industir Survey on Aero-
elastic Control System Instabilities in Aerospace Vehicles,
IAS Paper No. 62-47, Jan. 1962.

20. J. D. Welch and R. E. Wilson, "Cross-Coupling Dynamics and the
Problems of Automatic Control in Rapid Rolls," J. -Aeron. ,Sci.,
Vol. 24, No. 10, Oct. 1957, PP. 741-754.

S-2



II. C6ropqnents

. Gyros and Accelerometers

•I. Automatic Flight :Control Systetw for Piloted Aircraft, Northrop
-," . Aircraft, Inc., BuAer Rept. AE-61-'4VI, ,Bureau of Aeronautics,
-. avy "Dept., Apr. 1 o56, pp. II-93. thru II-1 3 and'Appendix,
* "Equations of 'the Gyroscope."

2. W. R. Ahrendt arid C. J. Savant, Servoiuedhanism Practice, McGraw-
1Hi-1 Book Co., Inc., bew York, 1 60.

3. J. S. Ausman, "Theory nf Iertidl Sensing Devicesc ' ' in G. R.
Pitman, Jr., ed., ~Ter;.al Guidahce,, John Wiley and Sons, Inc.,

New York-, 1962, pp'. .72-1.

4. L. Becker) "Gyro Pickoff Indications at Arbitrary Plane Attitudes,"
J. Aeron. Sci., Vol. 18, No. 11, Nova 1951, pp. 718-724.

5. C. Broxdeyei, Inertial Navigation Systems, McGraw-Hill Book Co.,
Ipc., New York,'1964.

-6. "J. G. R. Collette, Analysis andDesign of Space Vehidile Fli ht
Control Systems, Vol. XI --Component Dynamics, NA CR-850,
July 1967!

7. H. R. -1opkin and R. ,W, Dunn, Theoy and Developnent.of Automatic
Pilots, 1937-1947, R.A.E. Rept-'.I.A.P. 1459, Aug. !947. -

8. 'B. Lichtenstein,'B.., Gyros, Platforms, Accelerometers, 5th ed.,,
Kearfott Div.j General Precision, Inc., Little 'Falls, N. J.,
June 1962.,

9. W. R. MacDonald, "Acceleration Transducers of the. Force Balance
Type," Proc. Internationa ,'Ftlght Test Instrumentation
Symposium (1960), Pergamori Press, New York, 1 961', pp..15-25.

10. K. I. T. Richardson, The Gyroscope Applied, Hutchinson *and* Company,
Ltd,' London, 1 954.

11. C. J. Savant, Jr., R. C. Howard, C. B. Solloway, and' CA. Savant,
Principles of Inertial Navigation, McGraw-Hill Book Co., Inc.,
New York, 1961.

12. P. f . Savet, ed.,-Gyroscop&s: Theory and Design with Application
'to Instrumentation, Guidance and Control, McGraw-Hill Book Co.,
Inc., New York, 1961.

13. J. B. Scarboroug The Gyoscope, Theo n Alication, Inter-
science Publishers, Inc., New York, 1958. -

S-3



14.. J. M. Slater, Inertial Guidance Sensors, Reinhold Publishing Corp.,

New York, 1964.

9 Air Data Sensors

I. F; 0. Sme aria, Design and Tests of Aerodynamic Static Pressure

Compensators f6? Four Service Aircraft, WADC TR 59-583,
May I;59.

2. W. H. Coulthard, Aircraft Instrument Design, Pitman Publishing

Corp., New York, 1952, Chapt. 1.

3. F. M. Emerson, F. H. Gardner, G. D. Gruenwald, R. Olshausen and
L. V. Sloma, Study of Systems for True Angle of Attack
Measurement, WADC TR 54-267, May 1955.

4. D. G. Goodman, C. Salter, and J. H. Warsap, A New Design of Pitot-
Static Tube with a Discussion of Pitot-Static Tubes and Their

Calibration Factors, National Physical Laboratory Aero Rept.

1013, 7 May 1962.

5. W. Gracey, "Recent Developments in Pressure Altimetry,"J. Aircraft,
Vol. 2, No. 3, May-June 1965, pp. 161-165.

6. E. E. Hilliard, Supersonic Wind Tunnel Tests of Several Pitot-
Static Probes,? AEDC TR 65-192, Aug. 1965.

T7 S. R. Mallard, Calibration Tests of a Litton Conical Air Data
Probe at Mach Numbers of 2 to 8, AEDC TDR 62-186, Oct. 1962.

8. J. F. Muller, "Systematic Determination of Simplified Gain Schedul-
ing Programs, J. Aircraft, Vol. 4, N6. 6, Nov.-Dec. 1967,
pp. 529-534.

9. M. J. Teigen, Dimens ional Variables Affec ng Calibration Charac-
teristics of Null-Seeking Differenta...-Pressure and Vane Angle
of Attack Sensors, WADC TR 59-388, June 1959.

10. .J. Chaffois, Pitot.:Static Probes for Subsonic and Supersohic
Aircraft, ("Sondes Anemo-Barometriques Pour Avions Subsoniques
et Supersoniques "t Techniques et Sciences Aeronautiques et
Spatiles, [i962j1, PP. 7-17), R.A.E. Library Trans. No. 1052,.
Nov. 963. Translated by L. H. Townend, edited by
A. A. Woodfield.

/

//



Ci

0 Actuators
Is

. Basic Research and Development in Fluid Power Control for the
United States Air Force,,ASD-TDR-62-3, Jan. 1962.

2. Bibliograph on Servomechanisms. Bulletin of Automatic and. Manual
Control Abstracts, Ministry of Aviation TIL/BIB/52/37,
Apr. 1964.

3. Report of the Second Piloted Aircraft Flight Contro. Symposium,
BuAer Rept. AE-61 -r,, June'1 952.

4. Proceedings of the First Pil6ted Aircraft Powered Surface Control
System Symposium, Bureau of Aeronautics, Oct. 1949.

5. Electric Input Hydraulic Servovalve, SAE ARP 490, 15 July. 1958.

6. The Hydraulic System, Northrop Aircraft, Inc., BuAer Rept. •

AE-61-41V, Bureau of Aeronautics, Navy Dept.,. 1953.

7. W. H. Ahrendt and C. J. Savant, Jr., Servomechanism Practice,
2nd ed., McGraw-Hill Book Co., Inc., New York, 1960.

8. B. W. Anderson, The Analysis and Design of Pneumatic Systems,

John Wiley and Sons, Inc., New York, 1967."

9. J. F. Blackburn, G. Reethof, and J. L. Shearer, Fluid Power
Control, The Technology Press of M.I.T. 4ointly with John
Wiley and Sons, Inc., New York i 1960.

10. R. S. Cataldo, Analysis of Electrohydraulic Valves and Systems,
ISA Preprint ISA-I 1, presented at the Joint Automatic Control
Conference, MIT, 7-9 Sept. 1960.

11. G. E. Click, A. P. Henry, and D. T. McRuer, Design Study of
Multi-Function Hydraulic Actuating Devices, WADC TR 56-418,
Aug. 19Db.

12. J. G. R. Collette, Analysis and Design of Space Vehicle Flight
Control Systems, Vol. XI - Component Dynamics, NASA CR-830,,
July 1967.

13. J. E. Gibson and F. B. Tuteur, Control System Components, McGraw-
Hill Book Co., Inc., New York, 1958.

14. D. Graham, "Magnetic Clutches Add Muscle to Electronic Servos,
Space/Aeronaut., Apr. 1959.

15. A. G. Kegel and G. S. Axelby, "Actuators," in E. M. Grabbe, S.
Ramo, and D. E. Wooldridge, eds., Handbook of Automation

Computation and Control,.Vol. 3, Systems and Components,
(John Wiley and Sons, Inc., New York, 1961.

S-5

--



16. K. D. May, Advanced Valve Tdchrialogy, NASA SP-5019, Feb. 1965.

17. J. M. Nightingale, "Hydraulic Servo-Valve Design," Machine Deslgn)
Vol. 27, No. 1, 1955, P. 191.

18. J. L. Shearer, 'Tarnmic Characteristics of Valve Controlled
Hydraulic Servomotors," Trans. ASME, Aug. 1954.

19. J. L. Shearer, "Study of Pneumatic Processes," Trans. ASM.E,
Vol. 78, 1956, p. 239.

20. R. K. Smyth, "Operation of Autopilot Servo Actuators," Applied
Hdraulics and Pneumatics, Mar. 1959, pp. 110-113.

21. J. G. Truxal, ed., Control Engineer's Handbook, McGraw-Hill Book
Co., Inc., New York, 1958, Sects. 12, 14, 15, and 16.

22. R. Walters, Hydraulic and Electro-Hydraulic Servo Systems, CRC
Press, Cleveland, Ohio, 1967.

23. A. A. J. Willitt, "Developments in Aircraft Hydraulics Systems," -

The Aeroplane and Astronautics, Vol. 100, 17 Feb. 1961.

III. Descriptions of Complete Flight Control Systems and Related Documents

1. Automatic Flight Control Systems for Piloted Aircraft, Northrop
Aircraft, Inc., BuAer Rept. AE-61-4VI, Bureau of' Aeronautics, '

Navy Dept., Apr. 1956.

2 ". P-3 Automatic Pilot-Attitude Control for Jet Aircraft," Digest
(a publication of' theU. S. Navy),' Mar. 195I, .Pp. 9-17.

3. Current Autopilot Block Diagrams, prepared for SAE A-18 Commltti-e
Oct'. 1959. ' "

4. Automatic Pilots, SAE AS 402A, Issued I Aug. 1947, revised 1 Feb.

1959.

5. Automatic Pilot Installations, SAE ARP .419, 15 Nov. '1957.

6. C. R. Abrams, Final Report on the General Electric Self-Adaptive
Flight Control System, NADC-ED-6455,: June 1964.

7. R.'E. Andeen, ''Self-Adaptive Autopilots." Space/Aeronaut., Vol. 43,
No. 4, Apr. 1965, pp. 46-52.

8. H. E. Arnzenp "Flight Controls: A Look into the Future," Spdce/
Aeronaut., Vol. 33, No. 2, Feb. 1960, pp. 46-49.

s-6



9. V. A. BodnerandM. S. Kozlov, Stabilization of Flying Craft and
Autopilots, (Stabilizatsiya ietatel'nykh Apparatov I Autopiloty,
Gosudarstvennoye Nauchno-Teknicheskoye Izdatel'stvo, 0borongiz,
Moskva, 1961), Foreign Technology Div. Transl. FD-TT-62-811,
31 July 1962.

10. B. Boskovich and R. E. Kaufmann, "Evolution of the Honeywell
First-Generation Adaptive Autopilot and Its Applications to
F-94, F-101, X-15, and X-20 Vehicles," J. Aircraft, Vol. 3,

No. 4, July-Aug. 1966, pp. 296-304.

11. E. R. Buxton, "Smooth AutomaticoFlare Control," Space/Aeronaut.,
Nov. 1958.

12. C. H. Cannon, "Military and Civil All Weather Landing Systems for
C-141," J. Aircraft, Vol. 3, No. 6, Nov.-Dec. 1966, pp. 529-534.

13. W. H. Coulthard, Aircraft Instrument Design, Pitman Publishing
Corp., New York, 1952, Chapt. 18.

14. R. H. Cushman, "Vanguard Control Demonstrates Minimum Hardware
Approach, Parts I and II," Automatic Control, June 1958,
pp. 25-33, July 1958 ,- pp. 16-20.

15. J. W. Dawson, L. P. Harris, and E. A. Swean, Dynamic Response of
Two Aircraft-Autopilot Systems to Horizontal Turn Commands,
M.I.T.-, Dynamic Analysis and Control Lab., Rept. No. 94,

-* '31 Jan. 1955.

* 16. H. L. Ehlers, Technical-Considerations in the Design of Gust
Alleviation Cohtrol Systems, North American Aviation, Inc.,
Autonetics Div.,",Rapt. X7-953301, 17 Apr. 1967.

.17,. H. L. Ehlers, Helicopter.Automatic Flight Control Systems,
North American Rockwell -Corp., Autonetics Div., Oct. 1967.

18. W,. Eldridge, An investigation of Ways of Improving the Coordi-
nated Turn Maneuver 2f ,Jet Transport Aircraft, Boeing Airplane
Co. Document"No. D6-5998,- 9 Dec,. 1960.

IQ. D. Graham.and R. C. athrop, "Automatic Feedback Control and All-
Weather Flying," Aeronautical Eng. Rev., Vol. 14, -No. 10,
Oct. 1955, PP. 70-85.

20. , J. Holahan, "Electronic Pilot Automates Fighter in Aerial Attack,
Ground-Controlled Intercept, All-Weather Flight, Low
Approach," Aviation Age, Dec. 1957, PP. 102-108. ,

21. .R. Jex, I. L. Ashkenas, and R. A. ,Peters, "An Application'of
Airframe-ContrOller Optimization Techniques to a Supersonic
Misgile," Proc. IAS Symposium on Vehicle Systems Optimization,,
GardenfCity, N. Y., 28-29 Nov. 1961, pp. 115-126.

*S-7



22. P. J. Klass, "Sperry Innovates Design in Autopilot for Jet Trans-
port," Aviation Week, 26 Nov. 1956, Pp. 76-86.

23. K. C. Kramer,, "A-7A AFCS: A Flight-Proved High-Gain System.,"'
J. Aircraft; Vol. 3, No. 5, Sept.-Oct. 1966, pp. 454-461.

24. C. G. Mallery and F. C. Neebe, "Flight Test of General Electric
Self-Adaptive Control"" J. Aircraft, Vol. 3, No. 5, Sept.-Oct.
1966, pp. 449-453.

25. E. H. McDonald and J. A. Farris, The X-20 Flight Control System
Development, Systems Engineering Group SEG-TDR-64-8, June 1.964.

26. J. L. McKinley and R. D. Bent, "Electronic Navigation Equipment,"'

Chapt. 20, "Autopilot for Light Aircraft," Chapt. 21, and
"Autopilot for Jet Airliners," Chapt. 22 in Electricity and
Electronics for Aerospace Vehicles, McGraw-Hill Book Co.,
Inc., New York, 1961.

27. W. R. Monroe, "Improving the Dynamic Response of Airplanes by
Means of Electric Equipment," AIEE Trans., Vol. 72, Pt. II,
Jan. 1953, pp. 441-447.

28. L. J. Mueller, "Problems Unique to VTOL Automatic Flight Control,"
J. Aircraft, Vol. 2, No. 5, Sept.-Oct. 1965, PP. 357-360.

29. K. I. T. Richardson, The Oy-ozwope AjLppJed, Philosophical Library,
Inc., New York, 19 91S'.-.J--,Chpt-. 5 and Sect. IV,
Chapt. 2.

30. -C. L. Seacord, "FlighL Cortrcil for tvnized Spacecraft," Space!
Aeronaut., Vol. 40, No. 6, Nov. 1963, pp. 72-80.

31. J. Stambler, "Boeing 707 Flight Control System Tailored for
Safety," Aviation Age, ko y 1957, PP. 34-41.

32. C. A. Williams, Aircraft Instrument Control Systems, Odhams Press
Ltd., New York, 1963.

S-8



I I

To aply t 1o~ b.~i '~ ~Kil~3 he .xt to Lho dcs;g:

f'or il:b'stiatkre s&dauI:VCbee )co~ ~;.i Jo. a ~c~'i
" :nvnt.oil V. 'a ghl t-.>. ai tiem r tiJ-D.L.-Obw.t. \PYO,,airral

ana).yscst of closed-.loop ~ ~ ~tc~ to "Ilhu. he:n opcn-l.oop
dynax-ic-2 oPr ie vehi1cle '.nji ec the choloc n:V lhth~ob:s sbcv).. be
cl.osed O.C. the coupnsp .in whlih Y-t bercqu1 '.1 hIMc1 the h1c2s.e
illustrateI there ernov expl. il oi~e3v eal

-'the re'ader ce.n1 be assured thr'.t they i-:ex'e s-usycMtcJ by ro,, l feature.s of' tIC

performiiance of.actUvai vcidlces.

Soxie re'aOers of this voliiric 3Afty bo. digagtod, '013 pr'.tis 'in which sta.
bilty and cord~'ol eoye:t~ sts hav*lclo 1 thc ecsw' 'OSXnCe; ~r

estimtesor they rmey themso)lVes be stabxi'ity tand otrl eylis
If' not, hov%er, stidents of' the, subJect will need a souirce; -0-if cuta An ordcx?
to exerc'is-u the shills vhLch th-ey hawc ~c~pxircd ancd to depntheir.C llnrorV..
stand:.ugf. It is tic purpose of' this app.-ndix to pre~rldcde on6 ~ soarc.

hecre tho reader will finc o, ,., .dt dr.a~vr
and t±'ansfcor f'uncti on f'uctor-,s for nine aircraf't. rIl3e notvtion rie is

emiployod has been def~ined in Chai'sr ,5 and 6. Tho. choi ce of' h r.
cfaft has boon so.:ier..hat arbitrary. It has been dictated yprilmarly y the
ready ailb.iyto the autho-rs of tuirostrictco. datu. Wle hav, however,
-6tteiip-Led to provide a reprosentative selection of both his-torical. and'.
riodern aircraft. of a very wideo range of' on.uato. The reader wil.
quickly note that in se: -e caseos tho dela arc! extensive, cov'oring a 1 enn-
nuir-be.' of' fiht eon'c111iont . In, other cases thisis -not ~

A czaveat is in ordeor here. Dihe data preosented iLn this EA.prendi. have
been collectecd frc,.q ver divers.e lsources over a long peIo oftie In

a few cases the oa'1.nkinal sour'ce ofI thce data is no.. uncirear. Thz faniim-r
vith thc, ax*t ill~. ]~thr- ' ~ A&lr~ di -' .- emlly .-hich atl onds4 the, aci. ePt
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to ~i~' ~~~ e ~ i yc:;x, CI~ollea-a'es, Pad (we

Su"; ect" our 1iod. aC, accow'dJn- to tbc b-su judaicnt avalaJ."

:Itrd.t3da.~as i i~ ee5dhte y~tes&.lcons:Lr.m ef±s

63,gJC. L)'6a)Ii~*;r~~:otb h 4t' itO V! Twc te o-

tbc~e r~tr~'.~e '~hto U.:e1 ca tat t the clatta are! O."lly noinally

jieL~;t..~. --. Ub te sc..% ~ ca~ ~ofrain: I atc~r

th ~a ~atucr:Of, the x:aiC"An. rot b- held fcoiv . for t s

ill no-l:o,.l thL.: be boan~d tlo concowrl "mn Cn ori c:lvutonr w'ith

3'espeCrt to thIcl, ii~~:t~1c~ 'r~bt bc' drivod.r' its usm.

Tbe dta Proel-Iicd hecro c be iuude to scn :ve at t).e , ef

lux'1ozes . he~icsc avo arni ys~lt aneli.Th~-n ThIe sta bll*.-Ly d(;...-*vat:'vo

datv, :vro basic. Tihey in-y be: v sc. to tsct VXy an a1 or dlgital ucowav/

c~of, the )Jnw:~d ~t~ O t* o thely lrty bn uLl:ed to Com~pute,

for oxvnip'c thec orvz riloan~rsvb.c

arc lt ttibltldlxe. ec. On thce Other heand, mm:trcdrzf0! nny pxvjpo.c-,a~

WiLLfind itx'conveldit. to st-axrt ;ib tvlT~a-t.o,:m of tr~a;fhcr funtion

factors, . Thz Pero .1_ the moto .V ad tc~cus ce~c in the text,

tol~c iic.)k:Ly and m-.atdtvl-w11 cas:l~y ay.p: c[h rl'lt avc bothi

introtii~gand : o~tto

l1 ie a5.':"cR.ft ro-oresae-1dcl are:

Conyciit.-1onal Jaet-'rcp)l:Juud

straight W ing. .... .- 8

.. .. .. .. .. .. .. . A-sI] (iA..i:

je .Tit ... i...... ....... DC-18

Tilt Mat ............. VJ
Singicl-voto"- Hleicopter .... JT-19

Bristol. I]jhteI 4.............
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t C. ELEVATOR L.IGII DTUIAL TMA ISFER FR,'CTIO FACTORS. FOR THE A-4D

__ _ *FiIGimr COIMITIO _1 2 3. . , 6 78

Mach lo., M (-) 0.2 o.4 0.85 0.4 0.6 0.9 0.5 o.7

Altitude, h (rt) 0 0 0 15,000 15,000, 15,000 35,000 35,000

e.g. (0.) 0.2 0.25 0.25 0. 25 '0.25 0.25 0.25 o.25

We g.ht, w (lb) 2 22,058 17,578 17,578 17,578' 17,578 17,578" 17,578 17,578

tsp (,/Tip 0.317 0.348 o.436 0.280 0.304 (--.0783) 0.1883 0.225

,,p (1/T p2) 1.558 3.11 7.35 2,45 3.69 (0.121) 1.941 2.77
kiong onp ( 1/T 1 ) 0. 7371 0.Ct06 0.226 0.0439 0.0867 0.344 0.0488 0.1177

(I/Tp 2) 0.152 0.0905 0.0696 0.098 6.0635 6.23 0.0861 0.0752

Ao -2.21 -'11 .53 -64' -7.4 -19.42 -33.8 -5.26 -11.33

e 1/T 0.0482 0.01519 0 . 87 0-.0030 0.01187 0.0578 -o.o544 o.0909

I/TO2  0.3o9 0.804 2.08 'o^49 0.76 1:365 0.21 o.428
dc ga.n -0.585 -1..779 --. 1.5-1 , -0.194 -3.19 7.23 0.215 -J1,01,

Aw -.07, -o.7 -188 -22.,9 -56.9 -101.3 -15.81 -33.3

I/Twy 70.2 127.6- 326 137.1 218 319 162.2 232

Nbe w 0.217 0.0782 o.245, 0.069 0.0888 0.519 0.0917 0.191

0.1394 .0.101 O.O626 o.1o67 0.0711 0.0583 0.0918 . 0.0696

de gain -31-1 -669 -915 622 -1 14o 298 -772, -863-

A 7.07 hO.7 188 22.9 56.9 101.A 15.81 33.3

I/wI -. -9.5P -24.5 -7.72 -12.29 -19.84 -5.29 -9.59

e 1/Th2  -0.0777 0.00242 0.0268 -0.0208 0.00519 0.0554 -0.0511 -0.0023

/ 4.71 10.61 27.4 8.44 13.37 21.8 5.74 10.2

de gain I0.46 10 -3380 31.1 ;-48.5 -2427 24.5 7.5

Aaz 12.81 63 388 43.6 117.9 203 31.5 68.7,

1/Ta 21  0 0. 0 0 0 0 0 0

e I /Taz,2  -0.0772 0.00242 0.0268 -0.0208 0.00r5,; 0.051 -0 .051 -0.0023

4az o.0471 0.0422 oo461 0.0346 0.0315 o.o365 0.0202 0.026

04. 3.25 - 8.1 18.0.I 5.805 8.91 14.69 3.9 6.88
dc gain 0 L .I0 0 0 0 0
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D. IATEAL DDUISICAL DERIVATVES FOR THE A-4D

Note: Data are for body-fixed stability axes

_______ ThAIGHT CObDITION ______

2 3 5 6 7 8

h (0) 0 0 o15,000 '15,000 15,000 35,000 3,00
S() 0.2 o. 0.85 0.4 0.6 0.9 0.5 0.7

Yv (lsec) -0.1026 -0.23, ,-0.575 -0.11476 -0.228 -0.363 -0.0864 -0.1221

yp (ft/ec 2 )/rad -22.9 -108.6 -51.7 ;-62.4, -1.14.8 -31.5 -42 -83.2

T4s, (ft/s c 2 )/rad -0.606 -2.49 -7.41 -0;892 -2.37 -5 -4.416 -0.979

Y4, (1/ec)/rad -0.00272 :-0.005517 -0.0078 -0.00211 -0.00373 -0.00525, -0..000855 -0.001437

Ybr (ft/see2)/rad 3.70 15.83 85.3 8.92 25.1 52.3 7.28 14.11

Ter (1/sec)/rad 0.0166 0.035. 0.0898 0.0211 0.0395 0.0549 0.01497 0.0207.Lp, (I /se2 )  -3.21 -26.5 -127.3 -14.02 -3 -7.2 -6.4 2.: ,

S(1/ ec) " -0..12 -1.695 -3.81 -0;987 -1-.516 -2.5 -0.534 -0.816

Lr (1/see) 0.0317 0.913 2.13 0.608 0.875 1.391 0.288 0.523

L0 (1/see 2 ) 1.875 16.53 63.7 8.76 21.3 36.7 5.09 11.74

245 (1/sec ) 0.1284 6.99 40.9 2.8 9.96 24,.1 1.16. 4.73

j (1/sec ) -4.47 -27.3 -117.6 -16.29 -34.9 -81.6 -9.03 -22.7

Ij (1/sec) -0.396 -1.699 -3.83 -1.001o4 -1.516 -2.49 -0.562 -0.819

L; (1/ee) 0.11455 o.948 1.93 0.717 0.872 1.273 0.404 0.56

1;j, (1/sec2 ) 2.0 16.53 6 4.1 8.95 21.3 37.1 5.. 11.77

Lir (1/sec2 ) 0.617 7.36 37 3.75 9.92 21 .9 2.25 5.27

No (1/see2), 2.8 14.49 72.7 8.21 418.73 16.4 5.4,4 11.3

Ny (1/see) -0.111 !0.0392 0.1975 0 0.0398 O.12. 0 0.00845

N1r (1/sec)' -0.296 -. 624 -1.481 -0.4 -0565 -L0.957 -0.24 -0.321

N1
, (1/see 2 ) -0.02. 0.319 2.!'9 -0.164i 0.478 -1*49 -0.1087 0.0837

Nbr (1/oec2  ' -1.27 -61.43 -28.6 ' -3.64 -8.3 -17.38 -2.4, -4.69

N-j(/se 2) 3.54 i4.9 68 9.32 18.69 43.4 6.52 11.99

NP, (1/sec) -0.0452T 0,0651 0.0456 0.0687 0.0379 0.039 0.0676 0.0334
Nr. (1/see) -0.32 -0.638' "-I1.404 -0.1449 -0.564 -0.911 -0.288 -0.338

N51 (1/see2 ) -0.357 0.0671 5.05 -0.777 0.504 2.81 -0.759 -0.275

' (I/see2 ) -1.374 -6.54 -27.1 -3.9 -8.29 -16.6 -2.71 - .85
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N. AILERPef IATERML TRANSFER A"ICTIO FACTORS FOR W1 A-AD

4 2, , 2 . .3 6. 1 8

Achj;No., M (-) 0.2 0.4 o.85 o.4 6.6 0.9 0.5 0.7

Altiude, h (ft) 0 0 0 17,000 15,000 15,000 3-5,ooo 35,000

c.g. (% ) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Welgt, W (lb) 22,058 ;7,578 17'.578 17,578 17,578 17,578 17,5"8 17,578-

atrii (deg) 19,5 4.7 o.4. 8.9 3.4, -0.7 13.0 5.9

,, 6.0655 ' 0.00931 0 00438 b.00509 0.00.595 0.00595 -0.000577 0.001,

, j 1/Tn 0.5-3 13.07 3.81 1.016 1 .53r) 2.148 o.56- 0.842

0.0502 0.1115 0.1203 0.0949 o.o885 0.0964 O.Oi3 6.6625

1.894 .87 8.29 3.06 4.34 6.61 2.55 3,47

A2.0 i653 6t.4 8.95 21.3 37.1 . 5.. 11.77

1/Tpl 0 0 0 0 -0 0 0 0

N p.1209 0 1148 0.1214 0.09514 0.0924 0.0977 0.0695 0.0663

1.665 3 89 ~8.84 2.82 4.43 T.07 2.3 3.39

de giin, 0 0 0 0 0 0 "0"

Ar -0.357 0.071 5.05 -0.777 0.504 2.81; -o.79 -o.275

i/TrI  -1 .074, 17.47 5.57 -.1 .778 4.86 4.26, -1.29- -3.01

N T r 0.644 -0.0; 5 -0.1411 0.548 -0.283 -0.223 0.531 0.464

Or 1.439 3.90 2.45 1.975 2.93 2,.28 1.382 2.78

d.c gain ,5.9? 75 146.9 111.6 122.6 96.4 -888 14

Ap -0.00272 -o.00557 -0.0078 -0.00211 -0.00373 -0.00525 -0.000855. -0.001437

1/0.1874 -2.8 -0.1621 -368 -0.727 -0.1674 -887 -191.6

lp 11T (/P) 1.266 3.61 4.14 (0.935) 1.708 2.69 (0.835) (0.871).

1/a, (O ) -132 13.59 649 (0.583) 136.4 535 (0.33) (0.811)

'd ain ____

A -0.6o6 -2.488 -(.4o6 -o.89 -2.365 -5.o -0.416 -0.98
l1Zay.(a. 1) 0.177 (-.o.034) -0.196 0.512 1.872 -0.214 (0.0163) (-0.0056)

1/Tay2 vway I ) 1.07 (3.21) 4.22T 0.57 4.191 2.747 (9.112)- (5.94)

1/' .y3 ( aY3) (-0.0,64) (0.706) -16.82 (0.023) (-0.896) -1 .81 (0.871) (0.926)

C.(. 1/T4,4(uy,) (4.198) (1.81) 18.02 (7.96) (2.223) 1..65 (0.317) (0.661)
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1(6F. DE lATERAL TR':SFE-R F'UCTlai FA TORS FOR THE A-hD

FLIGHT CONDITIM:

Mach o., m 0. 0.4 0.85 0.4 0.9
0.6 02 0.5 0.7

Altitude, h (ft) 0 0 0 56 150 10000

c.ga. (% ) 0.25 0.25 0.25 0.25 0.25 0. 2, 0.25 0.2

Weigt. V (Ili) 22,08A 17,578 17,578 17,578 17,578, 17,578 i7,578 17,578

0.1.4(,,g) 19.5 8.7 o 1' 8.9 3.4 0.7 13.0 5.9____ _,_ __,, " ..... .... .o. 7_oo_,_
NJ/s0.0 5 5 0.00931 o=00438 0.0509 -oxo5q9, 0.0595, -o.=0577 0.004l1

.l6t 1/TR 3 1.707 3.81 1.016 1.535 2.48" 6.562 0.8.2

Id 702 0.1115 0.1203 0.0949 0.CZ85 0.0964 0.034 0.6625

, ___ " 1.394 3.87 8.29 3.06 4.34 6.61 2.55 3.47

0p .617 '(.36" 37 3.75 9.92 21.9 2.25 5.21

1/TP1  0. 00 0 0 0 0 0
0 0.

/ . . '. -3.28: -4.24 2.17 -3.06

2.5.3 3.0 4.43 - .2.0 3.21 .. 1.999 2.91

- o Geain 0 0 0 0 0 0 0

I/Tr 0.931 1.864 3;83 1.295 1.707 2.58 0.852 1.15

r C -o.34 -. 092' 0.307 -0.198 -0.0796 0.0754 .o.8 -0.23r

o.w6 o.639 o.469 o.66 0.610 o.564 0.528 0.63

do gain +,4.32 -20.9 -19.97 -45 -30.7 -21 V 305 -49.6

Ap 0.0166 e1.o354 0.0898 0.0211 '0.0395 0.05(49 .01497 0.0207

1/To1  .00052f -0.00961f -0.c0011'48 --0.021 -0.00.149 -0.01 -0.01869 -0.01081

I', 1/Tp2  0.42 1.716 3.81 1.032 1.538 2. 19 0.579 0.845
/T3  •83.0 I 85A 30 185.14 210 303 181.2 23,

Ag .70 -1,3 e 5.3 8.91' 25.09 52.26 7.28 114.'j1,

1/Tay, -o.063' -0.019 -0.0031 -0o034 -. 0.o51,, 00..oo,05 -0.031 -0.08

1/Tay2  o.A31 1.72' 3.82 J.0I 1.54 2.49 0.591 o8148

-2.05 -5 .17 -9.61 -4.025 -.5.13 -7.69 -2.88 -3.911

.. 1/TaY4 2.4o 5.80 11.03 4.471 5.68 8.61 3.17 4.243
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"A . B C

OWW'"hICAT. LID INIERTIAL. IGnMML DD4*2:SialAL ir ATERAL DII2Sl0AL
PAATR FOR THE C-47DEi' ~r FOR W~E c-147 DERIVATIVES FOR MX C-4.7

Note: Data are for body' fixed stability axes

3 w987 ft 2 , b915 ft, cu 11.5 ft, yo- dog

ELT. camI. FLT. COND. ALT. CooD.

_________ APO~) (APPROACH)-_ _______ (APMRACH)

h (ft) 1,000 .(ft) I,000w Ii (ft) -1,000

w-) 0.122 14 H- 0.122 14(- 0.122

Ba (ft/see) 1113 Tu (1/see-) - Y, (I./sec) -0.593

0 (slugs/it') 0.002309 (1,-/see) -04r,64-f Yo ((ft/seJ)/rmd] -8.648

VT0 (ft/sec) 106 X,. (i/see) .0-'6Ig7 Y (f/cc)/& -

jpV2/2 (lb/ft?) 21.3 X, lI/See) 0.115 Ye [(1/seel/rad]-

W (ib) 23,000 XU* fft/sec2 )/rad] - I ((ft/see)Irad] 5.4m88

m (slugs) Tili Ye; [I/see) /rad] 0.04.05

r. (slug-ft 2 ) 61,88-7zsr /e)--7 Io (1/se 2, -. 05

1 2 (slue-it 2 ) 139,200 k () L1 (i/see) 2.61

Z5. ((ft/see 2)/rail -0.712 Lb (1/see 2)

NOW (I /see- ft) -. ij (1/sea) -6.63

Nu (1/sec-it) - L.(1/see) 2.05

M ' (!?see) -2.20 Nfg (I/sec 2 0 .911

14, (1/sece) -456 1lr ( 1/see) -0.423

Nbr (1/sea 2)-~g

NA (1/ace 2 0.983

13 (1/see) --0.200

I 11r (1/se) 
.4

"b (ise 2  .o47

__________________ r' (1/see )2 -0.9-,8

A- 19



D7
ElIAILORtWOMMIL 3A.MMi VER. ATEAL RASFER WERIATMLTIMSFE ITERL CUPMG % /
MICT : 8CIOS FR VEC.-7 F,=IX: FACTRS OR, MEC.4 Rr~IOUFACORSFORTHE -47 FOR71MC-4

FIX.CWM M CM). T. OUD.4w.I=
1170 470 001-470

rAPMAR! (APMCH (APPA#,CH (APIA
MichNo. X .12 H--.hNo.,K 0122 Mac No, X0.12 YschNo. x .12

1WT0 3ATR ORIi .1 &,altl0 FA/TOi S 6O 1 .7 CUOa 1 ARS FO - -5 C17 FO lI Cl.

?.. 01~ FL? 0.323 F? 00. 1h%. 2 .
1.701 ad2.70 atiJ Aa0. 11

-4.25 A/? 4.043 AP O.014 r ~ 0 0.,238

'T,0.114. 1/TI 0 IN ; ~ 0 22.0

1 T21.19. C, 0. '.312 ' lT 0.779 / r
-Pb .. 1P ,a~ A ~ -3.89

do gain -3..4 1.02 1/TP2 -36.3 blI4Br ;t)i

Au-~w do gain 0 do gain 0 - - -

0026 bs

del,gain 1071 Sba 1.02 l 1b /T..2 -36.3 I1fY -31.1

AW-0:712 do gain -12.41 do pain 6.02 e.g. I /7a.73

I T,875 Ar 0.017 A1  -0.908 _r 1 ~ 0.260

-. e.g.
do fain -J415 1/i -1.3*~ 0.270 - "Ay 0.880

0.72~ jde Coin -2.83 do gaina I.3 y) I AV 22.)

I N. 0

1/TAg, 3.5 0/r377 1/Tay 6 .87 1/T. ~ 2

1/Ta, 31.1-3.1A'09 rI/ a3 098
0oct. P. I~g 1/Tt - I/ay 0d.*W

A& 072do gain 13 do gain A-735 - .r I T

o 0.38~A2hy54
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TABLE A-5

A. GEOMETRICAL AND INERTIAL PARAMETERS FOR THE DC-8

Note: Data are for body-fixed stability axes

S= 2600 ft2  , b =142.3 ft , = 23 ft , 7 0 deg.

FLIGHT CONDITION

8001 8002 8003 8004

APPROACH HOLING CRUISE VNE

h (ft) 0 15,000 33,000 33,000

M (-) 0.219 0.443 0.84 0.88

a (ft/sec) 1117 1058 982 982

p (slugs/-%3) 0.002378 0.01496 0.000795 0.000795

VT (ft/sec) 2 3.5 468.2 824.2 863.46

- oV2/2, (lb/ft2 )•  71.02 163.97 270.0 296.36

w (lb) 190,000 190,000 230,000 230,000

m (slugs) 5900 5900 7143 7143

Ix (slug-t,2) 3,090,000 3,110,0oo 3,770,000 3,770,000

Iy (slug-ft2 ) 2,940,000. 2,940,'000 3,560,000 3,560,000

Iz (slug-ft2) .5,580,000 5,880,000 7,130,000 7,130,000

Ixz (slug-ft2 ) 28,000 -6,500 45,000 53,700

xc.g./ 0.15 0.15 0.5 0.15

e0 (deg) 0 0 0 .0

U0 (ft/seaP) 2430.5 468. 2 824.2 8632:6.0

Wo (ft/sec) .0 0 0 0

5F (deg) 35 0 0 0
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B. LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE DC-8

1 Note: Data are for body-fixed stability axes

FLIGHT CONDITION

8001 8002 18003 8004

h () Q 15,000 33,000 33,000

H (-) 0429 0.43 o.84 0.88

Tu (1/see) -o.000595 -o.oooo86 0.000599 0.000733

Xu,( 1/sec) -0.02851 -0.00707 -0.0145 -0.0471

Xu~ (i/see) -o.0291 -0.00714 -0.014 -0.463

Xw (1/see) 0.0629 0.6321 0.0043 -;.0259

X8, [(ft/see2)/rad] -0 0 0 0

ZU,.( 1 /se) -0.25o6 -0.1329 -o.o735 o.o622

z- (1/sac) -0.2506 -. 1329 -0.0735 0.0622

H0 0 0 0

Zw (1/sea) -0.6277 -0.756 -0.806 -0.865

Ze, [ (t/sec 2 )/rad] _10.19 -23.7 -34.6 -38.6

Mu,(1/see-ft) -0.0000077 -0.000063 -0.000786 -0.00254
14(I/sec-ft) -0.0000077 -0.0000).63. -0.000786 -0.0025

'M* (I/ft) -0.001068 -0.00072 -0.00051 -0.00052

(l/sec-ft) -0.0087 -0.0107 -0.0111 -0.0139,

Mq,(1/see) -0.7924 -0.991 -o.924 -1.008

Ye (1/sec2) -1.35 -3.24 -4.59 -.-.12
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C. ELEVATOR IONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE.DC-8

FLIGHT CONDITION

80o 8002 8003 8004

Mach No., (-) 0.219 O.3 0.64 0.88

Altitude, h (ft) 0 1.5,000 33,000 33,000)
e.g. (-)1,5 15 15 1.5

Weight, W (2.b)- 190,000 190,000 230,000 230,000

top 0.522 0.43 0.342 0.325

fasp 1.619 2.40 3.15 3.59
"Along , p (1/Tp.) 0.0606 0.0310 0.241 (-0.0708)

( ' Tp2) 0.1635 0.0877 0.0243 (0.108)

Ae -1.338 -3.22 --57 -5.1

e 1/T61  0.60b5 0.01354 0.01436 0.0493
e I/To2  0.535 0.675 0.725 0.76

dc gain -0.618 -0.666 -8.14 1.939

Au -0.6I1 -0.761 -0.1-489 1.00.

1u I/Tul 1.08 1.279 0.816 0.449
S /T2  -35.3 -72.7 -879 279

de gain 348 1598 18,257 -1272

Aw -10.19 -23.7 -34.6 38.6
ll wl 33.0 65.0 110.2 -0 .o3 4

Nbe tw (i/r) 0.0781 0.037 0.1,762 (0.0827,),
1w (I/Tw3) 0.1798 0.0947 0.0511 (115.5)

de gain -155.3 -312 -1706 -136

A 10.19 23.7 34.6 38.6
1/ -3.75 -5.. -.24 -8.63

Ne 1/T/2  -0.00182 -. 0000-26 0.0107 0.0531
1/4 4.83 7.29 9.59 100.9

dc gain 4.79 o,614 -5000 18

Aaz -1 0.19 -?3.7 -34.6 -38.6

ae 1/Taz1  0 0 C0 0
N' 1/Taz2  ,-375 "5.95 -8.24A -8.63

cg -/Ta23  0.00182 -0.000026 0.0107 0.053i
.g /Ta 4  14.83 7.29 9.59 100.9

de gain 0 0 0 0
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D. IAEL DIMESI0NL DERIVATIVES FOR THE DC-8

Note: Data are for body-fixed stability axes

PLIGHT CONDITION

800i 8002 8003 8004
h (fh) 0 15,000 33,000 33,000

m(-H 0.219 o.443 o.84 0.88
Yv (1/sec) -0.1113 -0.1008 -0.0868 -0.0931

,[ (ft/sec2 )/rad1 -27.1 -47.2 -71.5 -80.4

,Y8, [(ft/sec2 )/r&d] 0 0 0 0

Yt . ( 1/sec)/fad] 0 0 0 0

Y8, ((ft/sec2 )/rad] 5.79 13.48 18.33 20.12

Yb* [(1I/sec)/rad] 0.0238. 0.0288 0.0222 0.0233
I3(1./sec) -1 .3z5 -2,.68 -4.43) --5.05

Lp (1/see) -0.95 -1.233 -1.18 -1.289

Lr (1/sec) 0.612 0.391 O.336 0.35

I& (1/ic 2 ) -"0.726 -1.62 -,2.11 -2.3

Lr (1/sec 2 ) 0.,1848 0.374 0.559 0.63

N(1/icc 2 ) -. 6 .271217.4

S(1ic) -1 .39 -2.8 -40.1 -0-5.02
r (1/icc) -0.268 -L 232 -0.181 -0.252

(I l/see) 0.609 o..397 o.-m4 0o. 36
6iS (1/sec 2 ) "-0.746, -1.62 -2*19 -2.3
Ibr (1/sec 2 ) 0.1613 0.392 o.849 -. 612
N (1/sec 2 ) 0. 63 1.271 2.17 2.47

Np (1,/sec) -0.1192 -0048 -0.01294 -0.00744

Nr (1/sec) -0.265 -0i252 -0.23 -0.252
N5, (1/sec2 )  -o.o496 -'.0365 -0.0519 -. o61.5
Nbr (1/sec;t -.39 -0.86 -1.168 -1 .L2
.N (I/seC2 )  0.757 1. 01 2.14 .2.43

Nj (1/860) -o.124 -. 0 46 -. 02 -0.01715
#r (!lsee) -0.265 -027 -0.228 -0.2
N51 (1/sec, ) -0.0532 -0.01875 -0.0652 -0.0788,

Nq, (1/sec 2 ) -. 9 -;o.864 -0.0116 -.. 277
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,a.

E. AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE DC-8

FLIGHT CONDITION

8001 8002 8003 8004

Mach No., C-) 0.219 0.443 0.84 0.88

Altitude, h (ft) 0 15,000 33,000 33,000
e.g. (% )1.5 1 15 15

Weight, W (ib) 190,000 190,000 230,000 239,000

I/T s  -0.013 0.00649 0.00404 0.00447

Alat 1/iR 1.121 1.329 1.254 1.35,6

td o.1o96 O.1061 o.0793 0.0855

%, 0.996 1.197 v.495 -1.589

Ap -0.726 -1.62 -2.11 -2.30

1/Tpl 0 0 0 0

NP0 .p 0.223 o.1554 0.1072 0.1094

0.9113 1.166 1.515, -1 ;620

dc gain 0 0 0 0
A p -- 726 -i1.62 -2.11 -2.30

N qa 0.223 0. 1554 0.1072 O.1094N~a

0.943 1.166 1.515 _ 1.620

dc gain 44.5 -177.9 -428 -395

Ar -0.0532 -0.01875 -0.0652 I -0.0788

r 1/Trl 0.998 1.589 1.644 1.757

Nr r -o.656 -0.727 -0.392 -0.345

1.242 2.23 1.323 1.269

de gain 5.66 -12.0 ."16.57 -14'.59

Ap 0.0532 o.di87 . o.0652 -0.0788

/Tpt -2.75 -7.9 -1.036 -0.704
Noa 1/TP2  0.203 0.197 0.291 0.404

1/TP3 - - -

dc gain 2.05 -2.35 -1.733 -1.467

Aay -1.19"I0 7 .-0.885 -9.54"10- 7  1-6.33

.Na 1/TayI  -2.75, -7.9 -1.036 -0.704

1/Tay2  0.203 0.197 0.291 0.404

e.g. 1/Tay3  ..-

1/Tay, 1.21.107 4.89.106 -

dc gain -55.6 111. 123.9 117.9
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F. RUDDER IATERAL TRANSFER FUNCTIOff FACTORS FOR THE DC-8

FLIGHT CONDITION

8001 8062 8003 8004

Mach No., m (-) 0.219 P.443 0.84 0.88
Altitude, b (ft) 0 15,000 33,000 33,000

c.g. 15 15 15 15

Weight, W (ib) 190,000 190,000 230,000 230,000

I/TS  -0.013 0.00649 0.00404 0.00447
iat 1/Th 1.121 1.329 1.254 1.356

d 0.1096, 0.1061 0.0793 0.0855

___ 0.996 1.197 1.4995 1.589
Ap 0.1813' 0.392 0.545 0.612

1 /TP1  0 0 0 0

Air 1/TP2  1.028 1.85 2.43' 2.57

1/Tp3  -2.13 -2.56 -3.01 -3.15

dc gain 0 0 0 0

Ap 0.1813 0.392 0.545 0.612

1. 10/1 1.028 1.85 2.43 2.57
r 1 /T(P 2  -2.1'l -2.56 -3.01 -3.15

dc gain 27.5 -150.5 -353 -324

Ar  -0.389 -0.864 -1.165 -1.277

r 1/Tr1  1.124 1.335 1.276 1.377

Nbr tr -0.0743 -0.0451 -0.0619 -0. -0475

0.339 0.330 0.323 0.323
dc gain 3.46 -10.19 -13.68 -12.00

0.0238 0.0288 0.0222 0.0233

S /T i -0.0559 -0.o1475 -0.00726 -0.oo637

Pr  1/T 2  1.141 1.297 1.217 1.323

1/T3 16.47 30.2 52.6 55.0
dc gain 1.725 -1.346 -0.912 -0.707
Aay 5.79 13.48 18.33 20.1

S1/Tay 1  -0.819 -0.0347 -0.01883 -0.01746

Nb 1/Tay2  -0.1077 I 1.535 1.122 1.231
r /Tay 3.( ay) (0.994)/ -1.157 -1.418 -1.494

c.g. 1/Tay4 (Q aY) (1.078) 1.147 1.723 1.819

dc gain --41,o 77.0 83.5 76.9
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G. IATERAL COUPLITG NUMATORS FOR ME DC-8

FLIGHT CONDITION

8001 8002 8003 8004

Mach No., M (-) 0.219 0.443 0.84 0.88

Altitude, h (ft) 0 15,000 33,000 53,0O0

ApT -0.01727, -0. •0466 -0.0470 -0.0 536

11 ~ 0 0 0 0
17.21 30.5 53.4 56.0

Aj -0.00127 -0.004 -0.00145 -0.001837
N~a~r . r1 -0.0672 -0.06. 0.0317 0.09507

'wap 5.52 13.39 8.2 7.79
p/s r A r 0.292 1.408 2.49 2.99

Nbabr

=N a,)r. 1/T 0.061 0.0*67 0.0439 0.0464"

N a. Aay 0.308 0.253 1.195 1,.586

N5a8 ar I/Toavl -2.75 -7.90 -1.036 -0.704

I /TpaY2 0.203 0.1967 0.291 0.404

________ /TP aY3  --

Aray -'0.308 -0.253 -1.195 -1.586
Nra ' 1'/Tray1  -1.532 -2,.94 -1.281 -1.192

tray 0.359 0.317 0.593 0.645
eg. coray 1.1 1.86 1.519 1.536

Apay -4.21 -21.8 -38.7 -46.3'

N Ily 1/Tpay1  0 0 0 0

I/Tpay -o.871 -1.184 -1.413 -0482

I /Tpay 1.18 1.445 1.651 1.744

AN -0d.01727 -0.0466 -0.0470 -, 036
Na~r 1/T( 11.21 30*5 53.4 56.0

A -4.21 -21.8 -38.7 -46.3
Na5r 1/Tq -0.871 -1.184 -1.413 -1.482

ec.g. 1 /T(a y2 1.18 1.445 1'. 65 1 1 .144
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TABLE A-7

A. GEMETRICAL AD INERTIAL BUIAM FOR IE XC-142

Note: Data are for body-fixed centerline axes

S=53ft 2  , b=67.5t , c=8.o7 ft ,oeg

nIGHT CcODITION

1420 1421 1422
HOVER 60 KTS 1 c.,o KTS

h (ft). 0 0 0

M (-) 0 0.0906 o.1812

a (ft/sec) 1,117 1,117 1,117

p (ulgs/ft3) 0.002378 0.002378 0.002378

VTo (ft/see) 1.0 101.28 202.56

=pV 2/2 (lb/ t2) 0 12.2 48.8

w (lb) 7,474 37,474 37,474

m (slugs) 1,163.8 1,163.8 1,163.8

Ix. (Sug., 2 ) 173,ooo 173,ooo 173,000

Iy ( slug-ft 2 ) 122,000 122,000 122,000

I (slug-ft 2 ) 267,000 267,000 267,000

lxz (,,lug.tt 2 ) 7,o0o 7,0oo 7,oo

xc.g./ 0.20 0.20 02

i (deg) 90 14.5 1.25

eo (deg) 0 0 0

Uo (ft/ec) 1.0 101.28 202.56

Wo (ft/sec) 0 0 0
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( B. LCUGITUDDI&L DIMENSI=NAL DERIVATIVES FOR T xc-12

Note: Data are for body-fixed centerline axes; thrust corrections
are included.

FLIGHT COCDITION

1120 111.21 1.22
___________ HamE 60 KTS 120 USh

h (fty 0 .0 0

m (-) 0 0.0906 0.1812

X(1/s 2 ' -0.21 -0.196 -0.22

Xw (bi/c) 0 0.035 0.060
t 4e (ft/sec2 )/in.] 0 0.124 ' 0.120

A T [(ft/sec
2 )/rad] 0 73 130.0

Zu (1/sec) 0 -0.278 -0.15

Z Y0 0 0

Zw (1 /se) -o.o65 -0.592 -0.85
'e [(ft/sec2 )/in.] 2.58 3.12 4.58

Z5T [(ft/sec 2)/rad -119.0 -130 -97

MU (,/sec-ft) 0.0073 0.0045 0.01

'* ( /t) -0.00127 -0.00127 -o.ooi27

(1/iec-t) 0.0003 -0.0002 -0.0095

Mq (1 /see) -0.085 -0.486 --o.89

tM [(1/sec2 )/in.] 0.765 0.87 1.195

8 1(, /se2-rad) 0.26 -3 .71 -5.0

be- inches of, scissrs (horizontal tail and tail prop contributions

included)
tb. ,radius of main prop blade angle (includes static governor effects)
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C. EEMVATOR I.fGIMIIDAL TRANSFER FUCTIIM FACTORS FQR THE XC-142

be inches of scissors (horizontal tail and tail prov contributions included)

FLicn conDiTIm

14#20 121 1422HOER 60rTS120 ITS

.ah No., M (-)0 0.0906 o.1812
Altitude, h (ft) 0 0 0

e.g. (% 20 20 20

Weight,. W (lb) 371474 37,1474 37,9474
top, (IiTo,') "-0.373 -0.1o9 o.624

Along o'sp ( /Tsp 2 ) 0-570 0.1411 1.60

Cp (1/Tp 1 ) (0.0650) (0-.552) o.3 6
0___%')_ (0,122), .9)40) 0.j72

Ae 0.72 o.866 1.19

NO 1T 0.0663 0.225 0.241
1/To2  0.210 0.566 0.798
de gain 0.64 1.26 0.715

Au -24.5 o.124 0.120

IIju I  0.0663 0.667 1,,32
NB 1/Tu2  - -13.5 -I2.61 /T3 -1!" 14.9 15.6

-de gain -106 -189 -98.0
A 2.58 3.12 4.58

N 1/Twl 0.834 28.7 53 .

Nb w-0.228 '0.319 o.642
0.531 0.303 0.172

.d__ e pgin 3 .7 94.1 22.7
Aj -2.58 -3.12 -4.58

h 1/T, 0.731 o.o52 0.198
N8e '/Tf2 ( l) (-0.386) -3.72 -6.60

1/Ti 3 (.) (0.562) 4.47 7.16
de pin -39.0 -33.3 122,

Aaz -11.1 -12.5 -16.8

N a 1/Taz1  0 0 0
be1/Taz 2  -0.293 0.05)47 0.198

xa =18f ta z * 0.660 0-178 0.110

pilot 0.428 2.07 3.42

dc gain 0 0 0
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D. WM ZTTLE LONGITWD1IAL TRANSFER FUNCTION FACTORS FOR ME XC-142
BT - radians of main prop blade anle inclndes static governor effects

FLIGHT Cct4ITION ______

1420 1421 1422
HOE 60 KT$ 120 KTS

Mach No., M (-) 0 0.0906 0.1812

Altitude, h (ft) 0 0 0

(% 20 20 20

Weight, W (ib) 37,.474 37,474 37,474
top -0.373 -0.lo9 0.624

Aong 0 0.570 0.411 1.60

'; (1/ 1Tp) (0.0650) (0.552) 0.306

_, (1/Tn) (0.722) (0.940) 0.352

Ae o..11 -3.54 4.96
0 l/TeI -.O.O7 0.1409 ,-0.1173

1/Te2  0,.210 0.567 0.755

de gain -0.258 -3.24 1.374

Au -;-13.24 73.0 130
I/Tul -0.0457 0.708 0.289

NT - 0.,1876 0.487

-1.163 1.707

dc gain 39.62 798 342

Aw -119- -130 -97

i/TV1  0.721 3.63 11.92
T -o.375 o.1541 -o.o104

0.571 0.332 0.20

dc gain -1,831 -594 -175

Aj 119 130 97

I Ti  0.722 -o.725 -1.739

1/TT2 () (-o.73) -0.1355 -o.242

1/Th3 (q) (0.570)' 1.827 3.55

do gain 1,831 267 453

Aaz -126-4 -66.2 -7.78

1/'1 Tao, 0 0 0

1 /Taz 2  0.707 -. 133 -4.60
Xar 18 ft 1/Ta 3 (ta) (-0. 375), -0.1258 -0.237

Pilot 1/Taz4 (faz) (0.550') 2.47 17.07
dc gain 0 0 0
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E. IATEPAL DDMENSIONAL DERIVATIVES FOR TE XC-142

Note: Data are for body-fixed centerline axes

FLITC0NDITICK

1420 I214 1422
_. HOVER 60 ,KTS 120 KTS

b(ft) 0 0 0

(-) 0 0.0906 0.1812

1v (1/see) -0.015 -0.0945 -0.175

"¥P [(ft/sec2 )/rad] -0.015 -9.58 -35.5
tYba [(ft/sec2 )/in. ] - -

tYs [(1/sec)/in.] - -
tYbr [(ft/sec2)/in. 0 0.248 0.94

'Y*, [(0/see)/in.] 0 o00245 ooo46
IP (/sec 2) -0.0006 -0.724 -1.93

L. (1/see) -0.235 -0.533 -0.85

Lr (1/sec) -0.025 0.395 0.582
tLb. [(1/sec?)/in.] -0.285 -0.1663 -0.192

Lbr [(1/sec2)Vin.] 0.0706 -0.081 0.0966

(1/see) -0.=00616 -0.715 -1.91

(csc) -0.235 -0.539 -0.855

14 (1/sec) -0.0335 0.382 0.559t Ir," [ (1/sec2)/in. ] -0P * ,285 -0.i67 -.193

1.,4 [(1/sec 2)/in.] 0,,0622 -0.0871 0.0913

No (1/sec2) -0.00037 0.237 0.630

Np (1/sec) 0 -0.123 -0.094

Nr ( 1/sec) -0.21 -0.342 -0.58
tN, [(I/sec2 )/in.] 0 -0.0085 -0.0215

+Nbr ((1/sec 2)/in. -0.21 -0.148 -0. 134

N (1'/sec 2) -0.000386 0.218 0.580

N. (1/see) -0.oo617 -0.37 -0.116

N.l (I/sec) -0.211 -0.332 -0.565-
tNB [(1/sec?)/in.] -0.007148 -0.0129 -0.0266
tN8 [(I/sev.2)/in.] -0.,208 -0. 150 -0.132

tba - inches of lateral stick (includes aileron and differential main prop

blade angle) positive ba gives negative

br-inches of pedal (includes rudder, aileron, and differential main prop
blade angle) positive br gives negative
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F. AILERON IATERPAL TRANSIeR FUNCTION FACTORS FOR THE XC-142

FLIGHT CONDITION

14120 14121 1422
HOVER 60 IKTS 120 - S

Mach No., M(-) 0 0.9o6 o.1812/

Altitude, h (f/0) 0 0 0

e.g. .20 20'
Weigt, W (ib) 37,474 37,47 " 37,A74

I/To 0.1911 0.1185 0.1236

1 /t 0.389 0.886 1.161
d -0.265 -0.0292 0.1699

S0.225 0.683 o.914

,A -0.285 -o.1668 -0.1927

p 1/TP 0 0 0

N6a t' (1/T2)' (0.0131) 0.411 o.418

a, (1IT,) (0.212) 0.555 0.97-7

a____ cain- 0 0 0

A '-0.285 -o.1668 -0.1927

. (1/Tqj) (0.0131) 0.4-11 0.418

a (1/TqP2) (0.212) 0.555 0.977

de gain -0.21,1 -1.047 -1.536

Ar -0.00748 -0. 0 '' -0.0266

S1/Tr -0.764 0.793 1.056

N6 a r 0.505 -O.813 -0.454

Of. 0.771 1.19 O.960

dc gain 0.903 "-0.296 -0.215

.% 0.o078 o.0d2 0.0266-

1/TA1  -1,228 -5.62 -1.605

6a  1/TA2  0.210 0.265 0.462

dc gain -513 -0.391 -0.1643

Aay 0.1507 -0.065 -0.285
N1a l/Ty 1  o.14409 -5.36 -1.152

x. = 18 f 1/Tay 2  1.207 0.389 0.603

za = 1.o0t 4y -o.448 -0.1224 0.0817

Pilot 'ay i.o48 1.165 1.876
Sdc gain 7.69 3.74 5.82
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G. RUDDER MATERAL TRANISFER FUNCTION FACTORS FOR THE XC-142

1420 1421 1422
HDVE 60 XT 120']T

Mach No., M (-) 0 0.0906 0.1812

Altitude, h (ft) 0 0 0

e.g. (% 20 .20 20

Weight, W (ib) 37,474 31,474 37,474

1/Ts  0.1911 0.1185 0.1236

1/TR 0.389 0.886 1.161
-0.2 -0.0292 o.1699

S0.225 0.693 o.914

A 0.0622 -0.087 0.0913

1 /Tp1  0 0 0

NP61 (1/TP 2 ) (0.00725) 0.444 (-1 586)

Op (1/Tp3) (0.-331) 1.245 (1.422)

de gain 0 0 0

A, 0.0622 -0.0871 0.0913
Ncr (1 /T~o I  (0.00725) o.4 44 (-1 .586)

aor (I/T2p) (0.331) 1.245 (1.422)

doe gain 0.0396 -2.76 l -1.7

Ar -0.208 -o.i5o4 -0.13i8
/Trl o.394 0.863 1.-15

N r  -0.291 -0.281 -0.0663

o.244 0.557 o.456

dec gain -1.303 -0.821 -0.263

Ap0.208 0.=245 o=0464

1/TPI 0.326 -0.3o8 -.0o244

4 r  1/TP2  9.52 0.587 1.076
1/TP3  - 62.0 28.8

____ dc gain 171.9 -0.560 .- 0.0293

Aay -3.81 -2.-37 -1 .524

N-1y 1/Tay, 0M0796 -0.204 -0.0506"
xa i8t 1/Tay2  o.399 0.765 1.110
za 1.0 ft tay -0.397 -0.0377 -. 0.0746

ZaPiot a0.283 0.861 I.664

Pilot dc gain --2.58 9.61 1.980
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H. LATERAL COUPLING NUMERATORS FOR THE XC-142

FLIGHT CONDITION

1420 1421 1422
HOVER 60 KTS 120 KTS

MachNo., (-) 0 0.0906 0.1812

Altitude, h (ft) 0 0 0

App -0.0599 -0.=0041 -0.000894

a8r 1 1  0 0 o
1 /PP 2  - 59.0 31.8

Arp -1.929 -0.000032 -Or.000123

Nbabr rp - -0.0398 0.000833

- 15.55 5.99

fabr A 1r  0.0599 0.0240 0.0278

= Nar 1 /Tr 0.015 0.0898 o.1479

Apay -0.0599 0.000159- 0.00132

Re, I/Tps¥1 0 -5.76 -0.37
xa = 18 ft 1/To (1 -580 -0.0399 (-0.1797)
_..pilot 1/Tpay3( ay) -130.3 (6.14)

r a Aiay 0.0599 0.0208 0.00286
x=a8tt . /Trayj 0.790 1.599 4.10z = t1.o I /ray -0.495 -0.452 -0.409

Pilot Way 0.,782 1 .445 3.36

Apay 1.078 0.390 0.320
Nxa= 1 /Tp ayl 0 0 0

X& =18 ft 0.26 0.0408 -0.04I
Pilot tPay 0.0289 0.748 ! .615

Av -0.0599 -0.000408 --9.000894

1 /TV - 59.0 31.8

Na A %y' 1.078 0.390 0.32

xa = 18 ft 4"y 0.26 0.0408 -0.041
za = 1.0 ft 0.0289 0.748 1.615

Pilot
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TABLE A-9

A. IonITuDi&a DERIVATIVEs FOR THE DOAK VZ-4,

U0, ft/sec e ..... 05. -73.0 .126.6

X........... 0 -.. 81 0.120 0.015

Xq ...........e....e.... 0 0 :0

% ......... '.......... .0 04 0.4 -O91

ZU0 -0.21i8 -0.285 -0.!1*5

***** ............. -0.137 - -0.526 -0.39 -0.718

Zq *................. 0 0 0 0

*10***SZ5* ... 10.0 r0.940 -0.906, -0.466

I ........... 1.08 1 .0e ~ 1 -00* .00*

MW -0.032 -0.06 -0.082

9q .................. ..0.04152 -0.858 -1 .*6 -1 .839

"8T 0 0 0 0

* ~8 ............ .* 0.775 0.775 0-775

W, lb .... ~..... 3,100 3,100 3,100 3,P1 0a

*Nomlized. (Note 14 /Zb* changes with forward speed due to shift fromIjet to tail control. Va~uese quoted are approxitate.)
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TABIE A-8

A. GWWTICAL AND INERTIAL. PARAMETERS FOR THE H-19

Note: Data are for body-fixed stibiliy axes

PLIGHT CONDITION

1901 1902 1903 190)

h (A) 0 .0 0 0

M (-) 0 0.0452 0.063 0.104

a (ft/see) 1,117 1,117 1,117 \  1,117

p (slugs/ft3) 0.002378 0.002378 0.002378 0.002378

VTOr (ft/sec) 1 5o.4 71.8 116.4

i= Pv2 /2 (lb/ft2) 0.00119 3.02 6.12 16.1

w (lb) 6,4oo 7,OO 7,oo0 7,000
,n (slugs) 198 217 217 217

Ix (slug-ft 2 ) '2,118 1,755' 1,755 1,755

Iy (slug-tt 2 ) 9,640 9,430 9,430 9,43o

Iz (slug-ft2) 7,840 7,840 7,840 7,840

Iz (slug-ft2) 0 0 0 0

L o (deg) 0 0 0 0
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B. I.ONGITUDINAL DIUTSIONAL DERIVATIVES FOR TE H-19

Note: Data are for body-fixed stability axes

FLIGHT CONDITION

'1901 1902 1903 -1904

h (ft) 0 0 0 0

VTo (ft/sec) 0 o.4 7-.8 116.4

Y.u.(1/sec) -0.0284 -0.039 -0.04.P -0.0.525

Xw (1/sec) 0 -0.00151 0.0-513 o;0207

Xe [(ft/sec 2)/rad] 32.2 33.0 32.0 30.6

4T [( ft/sec2)/ J0 .4.02 -3.04 -0.88

zu (1/sec) O -0.141 -0.063B 0.0151

(7 (-) - - -

Z. (1/sec) -0.69 -0.79 -0.80 -0.81

zk [(ft/sec2 )/iad] 0 39.4 56.6 92.0

ZST [(ft/sec2 )/ ] -358 -284 -291 -304

mI (1/sec-ft) 0.00609 0.00805 0.006654 0.00612

z4 (IIN 0 0 0 0

ML (I/sec-ft) 0 -0.00i -0.00171 -0.00231

Mc, (1/sec) -0.610 -0.944 -0.984 -I.004

M e (1/sec ) -6.65 -7.47 -7.35 -7.10

?45T (1/see2 ) 0 1.26 0.902 0.425
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C. ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE H-19

FLIGHT CONDITION

1901 190? 1,903 1904

Altitude, h (ft) 0 0 0

VTo (ft/sec) 0 50.4 71.8 116.4

Weight, W (1b) 6,4oo 7,oo 7,000 7,000

tsp (1/Tspl)' (0.69) 0.995 0.996 0.908

1_og wP (1/Tsp2) (0.874) 0.967 0.992 1.05
n.250 -0.159 -O.1O6 -0.033

o.473 0.473 o.418 0.380

Ae  -6.65 -7.47 -7.35 -7.10

e 1/To1  -0.00109 0.0035 0.0153 0.0249
Ne .1/T02  0.69 0.797 0.813 0.8413:

Au 32.2 33.0 32.0 30.6

0/TuI  o.69 0.788 0.809 0.874
]N8e 0.118 0.174 0.180 0.187

2.58 2.71 2.74 2.68

Aw . 39.4 56.6 92.0

1 /Tv 1  -8.71 -8.35 -7.94
NCe tw (1/Tw2) 0.0393 0.0922 (0.181)

w% (1/Tw 3) 0.263 0.0955 (-0.163)

Aj -39.4 -56.6 -92.0

I/T I  -0.0761 0.00522 0.0560

5e  0.171 0.179 0.183

2.76 2.75 2.,75

Aaz 39.4 56.6 92.0

Nsz 1 /Taz 0 0 0
e .z

I/Taz2  -O.0761 0.00522 0.0560
c.g. 0 .171 0.179 0.183

z  2.76 2.75 2.75
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D. THROTTLE LONGITUDINAL TRANSFER FUNCTION FACORS FOR THE H-19

FLIGHT CONDITION
I" _1901 1902 1903. 1904

Altitude, h (ft) 0 0 0 0

VTo (ft/sec) 0 50.4 71.8 116.4-

Weight, W (ib) 6,400 7,000 7,000 7,000

tp (11T,/ ) (0,69) o.995 0.996 0.908

A1 o t a~sp (1/TBp 2 ) (0.874) 0.967 0.992 1.05
Ap -0.250 -0.159 -O.106 -0.0433

alp 0.473 0.473 0.418 0.380

Ae 1.26 O.902 0.425

S 1/T1  0.0220 0.0227 0.0113
°i 1/T02  1.03 1.35 2.49

Au -4.02 -3.04 -0.88

I/ Jui 1.03 1.35 6.35

N T tu 0.094 .0.149 0.533

3.19 .3.09 2.45

Aw -284 -291 -304

S 1/Tw1  0.976 0.979 1.03

N6T  tw -0.22 -0.191 -0.160

0.495 0.456 0 .437

A °  284 291 304

1 /TI 0.966 0.905 0.805

All 0.503' 0.483 0.501
0.0152 0.127 0.251

AaZ -284 -291 -304

N z 1/Tazi 0 0 0
BT 1/Tz 2  0.966 0.9o5 0.805

c.g. az  0.503 0.483 0.501

ft z  0.0152 0.127 0.251
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E. IATERAL DIMENSIONAL DERIVATIVES FOR' THE H-19

Note: Data are for body-fixed stability axes

FLIGHT CONDITION

1901 1902 1903 1904

h (ft) 0 0 0 0

VTo (ft/sec) 0 5O.4 71.8 116.14

Yv (1/sec) -00731 -0.096 -0.1045 -0.122
Yp [ (ft/sec2 )/rad] -0.0731 -4.85 -7.51 -14.2

Y8  [(ft/sec2 )/radl 32.2 21.3 24.8 27.9
a

Yb* [(1/sec)/rad], 32.2 0.423 0.346 0.239

2
Ybr [(ft/sec )/rad] 17.3 15.8 15.8 16.7

Ybr .f(l/sec)/rad] 17.3 o.314 0,.220 O/ 143

I (1/sec 2 ) -0.052 -3.65 -5.19 --813

(1/sed), -3.18 -4.97 -5.01 -4.8i

1 (1 /see) 0.804 1.00 1.00 1.00

Lba -(1/sec2 ) 29.2 31.7 34.7 36.8

I14 (1/sec 2 ) 9.78 12.3 12.3 13.0

N (1/sec2 ) 0.0352 1.71 2.42 3.79

N (1/sec) 0.22 0.338 0.276 10.201

N (11see).-1 .1- .i- 1- .I

NtB' (i/see 2) 0 0 0 0

Nbr (1/sec2 ) -13.53 -13.80 -13.9 -14.4
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F. AILERON IATERAL TRANSFER FUNCTION FACTORS FOR THE H-19

___"___ FLIGT CONDITION _

* 1991 1902 1903 1904

Altitude, h (ft) 0 0 0 0
VTo (ft/nec) 0 50.4 71 .8 116.4

Weight, W (ib) 6,4oo 7,000 7,000 7,000

I/Ts  0.732 0.162 o .116 0.0821

1i/ 3.3 t.09 5.1. 4879da 0.155 0.344 0.1 6 .276

cud 0.609 1.33 1.58 1.96

Ap 29.2 31.7 34.7 36.8
1/Tp1  0 0 0 0

(I/Tp 2) (0.081) 0.429 0.364 0.296

a (1/Tp3) (1.04) 1.33 1.58 1.97

Ao 29.2 31.7 34.7 36.8

t (1/tqj) (0.081) o.429 0.364 0.296

& os (1/Tq,2) (1.,o4) 1.33 1.58 1.97

Ar 7.55 11.4 10.41 16.5

1/Trl - - -

r  tr 0.117 0.103 0.119 0.136
2.09 1.74 1.90 2.15

A32.2 o.423 0.346 0.239
1/.1 1.11 2.85 3.65 4.50

NP. I /T 2 (tP)' 0.295 o.375 0.334 0.218

1/TP3 (). 5.37 4.30 3.68 3.22
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G. RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR TBE H-19

FLIGHT CONDITION

Y_ _ 1901 1902 1903 19 04

Altitude h (ft) 0 0 0 O

VTo (ft/se,) 0 50.4 71.8 i 16.4
Weight, W (ib) 6,00 7,000 7,000 7,000

1/Ts  0.732 o.162 o1.,I16 0.0821

Alt 1/TR  3.43 5.09 5.10 4.87
C, 0.155 0.344 0.3)7 0.276

__ _ _ 0.609 1.33 1.58 1.96

Ap 9.78 12.3 12.5 13.0

1/Tp1  0 0 0 0

Npr 1/T2  0.313 (1.58) (1.85) (2.39)

1/Tp, -0.283 (-1.55) (-1.85) (-2.37)

Ac O9.78 12.3 12.5 13.0

N i/Tq}1  0.313 1.58 1.85 2.39r /Tc2 -0.283 -1.55 -1.85 -2.37

Ar -13.5 -13.8 -13.9 -14.4

I/TrI  3.11 4.73 -4.82 4.69
Nr -0.0561 -0.000756 -0.00938 -0.0198

M, o.524 0.534 0.530 0.547

17.3 0.314 0.220 0.143

I/ i -o.00872? -0.00281 -0.000922 -0.000396

N' /Tp2 (p) (0.518)" 5.?6 5.17 4.88

1/TP3 (4) (4.89) 44.8 64.1 101.4
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D. ELEVAtOR LONGITUDfIMAL TRANSFER FUNCTION FACTORS FOR THE-BRISTOL FIGHTER

FLIGHT CONDITION
____________________ 0001 0002

Mach No.,. M (7) 0.126 0.0893
Altitude, h'(t 6,000o 6,000

eog. (%33 .33

Weight, W (ib) 3,090 3,0O90

tap (1/Tsp1 ) (2.08) 0.956

Alog "p (1/T5~)('~5 1.69
41ngtsP)0.197 0.103

____alp_ 6j .183 0.279

A6  -12.0' --5.8

6 /Te 1  0.0785- 0.109,

N~e /T82  2.0 1.3R
:dc gain -8.38, -3.75,

Au86.9 98.6

N" u 0u.518 0.5,71
be

j3.00 1.63

dc gaint 34i.8 1178

1/Tw1  --

0.163 0.i28

0.288 0.362

dc gain -603 -3
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E. AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE BRISTOL FIGHTER

FLIGHT CONDITION

0001 0002

Mach No., (-) 0.126 0.0895

Altitude, h (ft) 6,000 6,000

e.g. (%'-Z) 33 33
Weight, W' (ib) 3,090 3,090

' ,'0 trim (deg) 3 10

i/Ts -0.000836 O.o5Q8

l1at /TR 7.07 '4.62

td 0.215 0.273
1.44 0.886

Ap 26.1 12.7

1/Tp1  0.0278 -0.00865

NPa  p o.158 0.575

o" 1.14 -o.44

do gain -76.4 0.152

AT 26.3 12.7

T~ t(I/T) 0.216 (0.563)
qp (1/Tp,) 1.1A (-0.463)
S do ggiu; --2788 -18

Ar -1.66 -0.805

!,/Tr 0.637 13.0

Nr* t r (/Tr2) (14.1) 0.261

c6± (I/Tr 3 ) (-0.512) 0.319

d6 gain -- 622 -5.82

Ap 3.03 2 2.96

i/ P 0.0656 -0.00547

ba 1 /T2 9.73 * 4.89
1/TP3  -

de gain -157 -0.431



F. RUDDER lATERAL TRANSFER FUNCTION FACTORS FOR THE BRISTOL FIGHTER

FLIGHT CONDITION
o001 0002

Mach No., M -) 0.126 0.0895
Altitude, h" (ft) 6,000 6,000 -

c.g. (% 33 33
Weight, W (ib), 3,090 3,09o

atrm (deg) 3- 10,

1 /o --0.000836 0.0508

it WT-  7.07 4.62

0.215 0.273
_ _ _ .44 0.886
Ap 2.67 1.49

0,0266 -0.00800

1Tp2  2;33 1.84

dc ga:in, -13.5 -0..ii9

A -0.160 0.0165

N, 1/T1  3. 05 179i/T 
-12.5 93.3

de gaiin -495 14.9

Ar 1"1 30 0.630

I/TrI  7.16 4.79
Nr.r o.248 0.200

0.381 0.527
dc gain -110 4.5.5

-1.30 -o.621

1/Tl --0.0383 -0.176;

1/Tp1 7-1'3 4.64

1 /TP3
dc gain.... -28.9 2.76
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G. IATERAL COUPLING NUMERATORS FOR THE BRISTOL FITE

LIGHT CONDITION
0001 0002

Mach No., M (-) o.126 0.0895

Altitude, h (ft) 6,000 6,000

A -33.9 -7.88
1/ T 0.026 -0.00860
I/T 2  -- _--

A -I78 .37

r .1 1.89

N88 r A p 33.9 8.00

Nkrar 11Tq. 0.176 0.120

N P Aq -33.7 -7.92

Babr 1/T$- -
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Because inputs to which automatic control systems fok aircraft will be

subjected are often either very comlicated or'are not kiown in detail, it may

be necessary to consider performance of the system in response to commhnds and

disturbances which are considered to be random variables. Other applications

of the theory of random variables to the synthesis of automatic flight control

systems have to do with the assessment of design qualities,: in particular with

the estimation of likelihood of failure of the system or its components.

The study of random variables, quantities which may take any values of a

s ecified set with a specified probability, comprises the science of statistics.

While it is not feasible here to give an account of more than a minute part of

the subject, we can aspire to expose just those elements of the underlying

theory which 'our 6xaples in the main text require.*

Probability as'a concept is treated first. This is immediately followed

by a discussion of how certain probabilities may be computed if other

probabilities are known,.asin the addition and multiplication laws of

probability. Random variables are then defined, and consideration of the

*Useful introductory references include:,

A. C. Aitken, Statistical Mathematics, Oliver and Boyd, Edinburgh
and London, 8th Edition, 1957.

M. J. Moroney, Facts from Figures, Penguin Books, p3rd'Edition, 1956.

D. A. S. Frazer, Statistics, An Introduction, John Wiley and Sons, Inc.,
New York, 1958.

G. J. Hahn, "Probability and Statistics," Chapter 6 in H. Chestnut,
Systems Engineering Tools, John Wiley and Sons, Inc., New York, 1965.

H. H. Goode, R. E. Machol, Systems Engineering, McGraw-Hill Book Co., Inc.,
New York, 1957.

W. R. Bennett, "Methods of Solving Noise Problems," Proceedings LRE,
Vol. 44 (1956)-pp. 609-638.
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probability that a random variable will take certain values introduces the

first probability distribution and density functions. Next the most

important averages or "statistics" of random variables are defined. These

include the mean, mean square, and the characteristic function. Finally the

binomial, Poisson, uniform, exponential, and Gaussian 'distributions are

described, derived, and put to use in elementary illustrative examles.

Although there is some inherent difficulty in defining probability in

a completely satisfactory mnner, for nearly every engineering use, empirical

probability is a suitable interpretation of the concept.

Imagine or make a large number of experiments which may materialize, under

what are taken to be identical conditions, in two or more outcomes or events.

(An event isgenerally, something concerning which it can be determined whether

or not it occurred.) The set of all possible events comprises the sample

space, ., and, corresponding to each basic possible outcome of the experiment
we associate a sample point, i, in this space. An event may then correspond

to' a single sample point or to a set of such sample points. For example, the

outcome "three spots showing" of the roll of a single die is an event and a

sample point. On the other hand, the event "three or fewer spots showing"

comprises three sample points since it corresponds to three basic possible

outcomes of the experiment.

Now the results of certain experiments, repeated a large number of

times, may show, or at least be believed to show, statistical regularity.

If the outcome A occurs nA times in N trials and the ratio Pr(A) =nA/N

appears to approach a limit as the number of trials, N, becomes very large,

Pr(,A) may be taken to be the probability of the. event A.* (The simplest

example is the flipping of a coin. We may take it that in each trial there

are only two possible outcomes: heads or tails. The result of a large

number of trials will be, for instance, that the number of heads divided by

the number of trials is very close to 1/2.) It follows directly from the

*The difficulty with empirical probability as a concept resides in the
postulated limit. It is impossible to satisfactorily show that the limit,
should exist and be unique, and otherwise, the limiting process does not
behave in the same way as the familiar mathematical limiting process for
a sequence.
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definition of probability that the probability has two properties, namely:

Pr(A) > 0

Pr() --1

Consider further, arnd more generally, that there may be four identifiable

outcomes of an experiment each one of which is a distinct possibility:

the event, A only, occurs nA times in N trials

the event, B only, occurs nB times in N trials

the events, A and B, occur together nAB times in'N trials

the event, neither A nor B, ocurs n times in N trials-

and that this takes care of all the possibilities. Then for a large number,

of trials, N:

the probability of the event A = Pr(A)=" nA+nAB

nt+nAB
the probability of the event B = Pr(B) N n

.nAB

the probability of the event A and B = Pr(AB) = --

(B-2)

the probability of the event A or B = Pr(A+B) A" nA+nB+nA- N

the probability of the event neither A nor B = Pr(ii) "

nA+nB+nAB
"= I - Pr(A+B) "c1 N

the probability of the event A given that PAB -nAB
event B has occurred Pr, nBnAB
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Total probability is the probability of any one of several mutually

exclusive outcomes, say, A, B, or C where each of the mutually exclusive

events is a set of sample points or elements. The set of all possible

outcomes (space) can be represented as the area inside a circle in an Euir

or Venn diagram. Then the fractions of the area marked A, B, and C represent

fractions of the total number of trials which resulted in the event A, B, or

C. See Fig.,B-la.

C (not AorB8)

"Compound"

A/" probability O~f
c,.. the joint occurrence

of A'and B
a) Mutually Exc/usve b)Outcomes not

Outcomes , , Mutually Exclusive

Fig. B-1. Euler Diagrams

On the other hand, if the outcomes are not mutually ekclusive, areas on the

Euler diagram may still represent fhe fractions of the area of the circle

(sets of sample points) defined by Eq B-2.

Reasoning from either the algebraic ,expressions (Eq B-2) or the geo-

metrical representation, (Fig. B-I).

Pr(A.+ B).= Pr(A) + Pr(B) - Pr(AB) (B-3)

This is called the addition law of probabilities. If the event.jA and the

event B are mutually exclusive, the compound or joint probability Pr(A) = 0,

and the addition law is simply:

Pr(A + B) = Pr(A) + Pr(B). (B-4)

In the case in which the event A and the event B may occur together, the

conditional probability, Pr(A/B), can,,be expressed in terms of the probability

of the event B and the compound or joint probability, Pr(AB):
nAB. nB + nAB -rA)(B)

Pr(A/B) Pr(B) = = .-'(A4 (B-5)
or PrA/) )

=(Pr(B)
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It is not necessary for the events to be simultaneous in order to apply this

r definition of conditional probability. When the events A and B are

independent,

Pr(A/B) au Pr(A)

and Pr(AB) = Pr(A/B) Pr(B) = Pr(A)-Pr(B) (B-6)

This is called the multiplication law.

The addition law and the multiplication law are easily.generalized to ca es

of more than two independent events. Thus for three independent events, A, B,

and C,

Pr(A + B + C) = Pr(A) + Pr(B) + Pr(C) - Pr(AB) r Pr(AC) a Pr(BC) + Pr(ABC)

-1 - Pr(K) Pr(i) Pr(a) (B-7)

= 1 - [1 - Pr(A)][1 - Pr(B)] [1 - Pr(C)].

Pr(ABC) =Pr(A) Pr(B) Pr(C) (B-8)

and so forth. Equation B-6, or B-8 is the mathematical statenient of the

definition of independence, i.e. A and 'B are independent when EqB-6 applies,

or A, B, ard C are independent when Eq B-8 applies.

An example of events which are not mutually exclusive but which are independent

might be the drawing of an ace or a spade (on a single draw) from a standard

deck of 52 playing cards.

Pr(Spade) i

Pr(Ace) = = .

The probability of drawing the card which is both a spade and an ace is

Pr(Space Ace) = Pr(Spade) Pr(Ace) = x -
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and this illustrates the multiplication law for independent events. Finally

the probability of a spade or an ace is:

Pr(Spade + Ace) Pr(Spade) + Pr(Ace) - Pr(Spade Ace)
I1

52 52 52

This illustrates the operation of the addition law.

Consider--neit an example in which the events are neither mutually

exclusive nor Independent. Two coins are tossed simultaneously. There are

four possible basic outcomes (simple points). They are head-head, head-tail,

tail-head, and tail-tail. We ask first what is the probability that at least

one head occurs. By counting the outcomes in which at least one head occurs:

Pr(Head) = Pr(Tail)

Also the Joint probability of a head and a tail is

Pr(Head ,Tail) =1

and the conditional probability of a bead, given that a tail has occurred, is:

Pr(Head/Tail) =

From the addition law, the probability of a head or a tail is:

Pr(Head + Tail) = + - =

and the relationship between the conditional and Joint probabilities is

illustrated by the calculation:

Pr(Head/Tail) Pr(Tail) = Pr(Head Tail)
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Note that here Pr(Head Tail) # Pr(Head) Pr(Tail), i.e. the events;"at least

one head" and "at least one tail," are not independent in simultaneous tosses

of two coins.

PAZ= VARM Ws

It is often more interesting to consider some function of the outcomes of

an experiment rather than the outcomes themselves. If then we assign, to every

sample point (element), i, of the sample space (set), f. a number X()

according to some rule, the function X(f), defined on the sample space, is a

random variable* provided that X(Q) < x is an event and, that X() = ± w

are events but that the probability of their occurrence is zero. Note that

the outcome itself falls under the definition of a random variable since the

functional dependence may allowably comprise the identity function. Thus

outcomes or functions of outcomes are random variables.

DI T AON AID ENSI FUNCTIONS

Now define, for any number -a < x <u, the probability, that X(t) < x as

the real valued first probability distribution function of the random

variable X(:

Pr(x() x )-Pl( ) (B-9)'

The first probability distribution function has the properties:

P, (-COY= 0

P,1 (so) = 1 (B-10)

P1(xI) <P 1 (x2 ); X1<X 2

If n(x) is the number of times, in an experiment repeated N times, in which

*The use of the words "random variable" for a function is rooted in precedent.
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X(g) <xi then for a very large number of repetitions:

P1 () L "

The derivative of the first probability distribution function is called

the first Probability density function, p1 (x).

-- p,(x
dx'=p 1 x) (N. 12)

Then the probability element p1 (x)dx = Pr[x < X(t) < x + dx]. As often

happens, the distribution function may have step-form discontinuities, and

there are delta functions in its derivative. For the case of so-called

discrete random variables, the density functions actually consist of a sum of-

weighted delta functions:

Pl(x) = Pi 8(x - Xi) (B-13)

The probability that a function X() lies 'between two values, say x1 and

x2, is obtained by integrating the density function between .those limits:.

Pr[x1 < X(O < X2] = fXx2pli(x)dx (B-14)

and clearly, from the definition of a random variable,:

[f,= Jp(x)dx= 1. (B15)

The names distribution function and density function come from the analogy

to a unit mass distributed along the line which is the x-axis. The mass element
dM dM

in a small distance, dx, is dx, where d- is the mass per unit length,

or density. Then the total mass to the left of a given point x, is obtained

by integrating the density function L, or-

dx

M(x) = f()x (B-)

Now M(-oo) - 0 while M(co) = 1 as in the probability distribution function.
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EPECTAMUON, WIMAN D VABZANCE

In the theory and application of probabilitythe average, mean, or
mathematical expectation of a random variable has a surpassing importance.

As every schoolboy knows, the way in which to find the average value, of a

random variable, Xi, which takes a number of discrete values, is to multiply

each value by the number of times, ni, it occurs, form the sum and divide

by the total number of observations, N.

X1 n I j + •..Xn

Averagetof X = E[X] = N (B-17)

According to our interpretation of probability, however, a fraction such as
nl/N is gsimpiy the probability, ,p I , of the event Xl so that Eq B-17 c0&I i be

rewrittenti

E[X] = Xl1p + X2P2 + . + XnPn E XiPi (B18)

i--1

In the case of a continuous random variale the probability that the variable

lies, in the ,narrow. ,range between x and 'x '+ dx is the probability element

P1 (x)dx. 4Now-considering th.e integral as the limit of a sum:

E [X]="f xp1 (x)dx (B-19)

When the expected value of somefunction ,f x, say g(x), is wanted':

E[g(x)] - f (kp (x)dx' (B-20)

Those averages in which g(X) = Xn are of particular importance. They are

called the moments of the distribution, and have the form:

Iflr E[n I xP pl,(x) dx (-1

From the defining properties of an allowable distribution function, the zero

order moment, io, always equals 1. The first moment, mI, is the arithmetic

mean, the second moment, m2, is the mean-square, and so forth,
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In terms of physical analogies, the mean is simply the centroid of' the

density function, while the mean-square value is the radius of gyration of

the density' functfon. These 'two moments are illustrated for a rectangular

density function in Fig. B-2.

0X

a) A Rectangular Density Function
x dx [x Z

1.0-
' fX p(x)dx

+ ,..'N\\\ IX T5 2i:'

-. 0 K.--XX-- X

h) Calculaion of 'the c) Calculation of the
Mean Value Mean-Sqqo, Value

Fig. B-2. Mean and Mean-Square Values for1: ' the Rectangular Density Function

If the mean value is subtracted from all values of X, the moments derived

from the results become central moments. Thus,

,= [(X -ml)n]=f [IX - m,,1] pl(x)dx (B-22)

The first central moment, gI is zero. The second central moment is

B-10



g2 xf , ,(x)dx

4 2 (B-23)

-E[X2] -[X 1 2 =02

92 02 is the variance. The square root of the variance is the standard

deviation of the distribution for the ensemble XI. . . ,Xn

When the mean is :zero the variance and the mean-square are identical.-

The mean and the variance (or standard deviation) are' often the most

significant quantities which may characterize a distribution.

CHRAOTECT FUNCTION

The characteristic function is the' expected value of the complex

conjugate Fourier transform of a random variable X.

E(Ia) + a x  = f +  p (x)dx (B-24)

By expanding the exponential function in a series:

.00 dx

= P1(x)dx + j o x p1 (x)dx + x2 p1(x)dx (B-25)

+ LOp(x)dx + . ) x41()dx+ . .

The integrals of this last expression may be recognized as the central moments

of the distribution defined by the density function pl(x). The characteristic.

function, therefore, contains information reflecting the character of all the

central moments of the distribution. In fact, if the expres ion on the right

hand side of Eq B-25 is compared to the Maclaurin series expansion for. the

characteristic function
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(C)= q)(o) + + VI(o) + -.. + T .,(O) • + * (B-26)

it may be seen that the central moments of the distribution can be computed

from derivatives of the characteristic function evaluated at co = 0.

E(Xn) =f xnp1(x)dx = (j)-n dan qcb )  (B-27)

Aiother use of the characteristic function is in the computation of the

first probability density function of the sum of two random variables. The

characteristic function of the sum of two independent random variables is the

product of the characteristic functions of the individual variables.

q) = qip(co) 92(a)) (B-28)

Then the first probability density function for the sum is the inverse complex

conjugate Fourier transform:

P1 (X1 +x2) =~~[(wJ~q , (- ) ) (B-29)

-- f e~j  q (c)da

This inverse transform may be written as a convolution integral

P + x2) = f P11(t1 ) p12 (x - t1)dtlI  (B-30)

EXAMPLES OF DISTRIBUT:ON FUNCTIONS

While the conditions on the first .probability distribution function are

so broad as to admit of a very large number of interesting possibilities, th6\

number of different distribution functions often encountered in engineering

design work is quite small. It includes the binomial (or Bernoulli), Poisson,

uniform, exponential, end Gaussian (or normal) distributions. The first two

of these are discrete distributiohs in which the density function is a"sum

of delta functions. The next three are continuous distributions. Some of the

characteristics of these one dimensional distributions are summarized in

Table B-i.
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In order to illustrate the types of random variables to which each of these

4' distributions is appropriate, we shall discuss each of them in turn.

-Te Bing9.al, Distribution

'The binomial distribution was discovered by Jakob Bernoulli and was

published posthumously on his behalf in 1713. It was the first probability

distribution to be discovered. It is useful for the description of the

nummer'of times a given event, say A, will occur in a given number of, trials,

say n, when the'probability of success on each trial is the same and the

trials are independent of one another. It may,. for example, be used to find

-the number of ground to air missiles required, on the average, to score at.

least one 'hit on an airplane, or, alternatively, it may be used to describe

the probability that an item of equipment will satisfactorily complete a

mission. It i-s of surpassing importance in the theory of sampling inspection.

- Consider a random experiment with two possib.Le outcomes,A (success) and

(failure). Define Pr(A) = p and Pr(A) = q = 1 - p. Then consider the

experiment' repeated 1, "2, . . . n times with the outcome on each- trial independent

of previous results.

On the first trial the result may be a failure or a success and their

respective probabilities are q and p. After the second triali we -may have

observed two failures (probability from the multiplication law), a failure

and a success (probability = qp), a success and a failure (probability = pq),

or two successes (probability =p 2'). Similarly we could count the outcomes

after three trials. We could then describe the results after the third trial.

The results might be arranged as shown in Table B-2.

TABLE B-2

SEQUENCES OF FAILURES ANP SUCCESSES

1st Trial A or A

2nd Trial P or A or AX or AA

3rd Trial A or AAA or W or AAA

or AAA or AAA or AAA or AAA
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Considering the probabilities of these occurrences, and now disregarding the

precise .sequence in which successes and failures might occur, the probabilities

can also be arranged in a table. Once the pattern is clear (Pascal's triangle),

the table can be extended very easily.

TABLE B-3

PASCAL' S TRIANGLE

0 Trials

1 Trial p

2 Trials q 2  2qp p P

3 Trials q~ 3q2p 3qp 3\/ /qp p/

4 Trials q 4q3p 6%p2 3 p

Of course, "terms on any given line represent the terms in the expansion of the

-.binomial (q + p)n. (Hence the name, of the distribution.)

More generally, the number of equally likely sequences ,bf 6 successes and

n - s failures in n trials is = n!/s(n s)!], and the _probability that

the number x = s (a specified number of successes):

Pr( q p (B-31)

.'(This formula is only valid for integer values, s = O, 1, 2, . . . n.) Then a
'partial table of the distribution of the probabilities for any choice of a

number of successes, s, and number of trials, n, might appear as follows:

Number of 0 2 3 n
Successes, s 

3

n n- l ~n\ n-2 2 (n)n-3 n

Pr(x=s) qn n qn-l ()q ( qn-p 3

This is just one row in the triangle table.
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Since (q + p)n_ 1, the sum of all the -probabilities. is one as it sh6uldzbe.

The density :fupction of the binomial distribution may be written::

n""n ps ">s "' "

= n~s ql (-s (B_32).

There is a binomial distribution for each value of. n and p. These ,are

known as the parameters of the distribution. Extensive tables of the-

distribution have been calculated.* This, however, is very tedious when the

number of triaLs, n, -is large.. For many practical purposes, the, binomial

distribution can be successfully approximated. When the probability of either

success or failure is small, the binomial distribution can be approximated by

the Poisson distribution. ('See below.) On the other hand .if-.p q, the

continuous Gaussian distribution may be used as -an approximation to- the.'discrete

binomial distribution, by fitting the mean and variance, provided only that the

number of trials, n, is reasonably large.

As an example of the application Of the binomial distribution to problems

in aircraft subsystem reliability, consider the question of the, relative

reliability of single and twin engined airplanes. Suppose the probability that

an engine .will complete a four hour mission is.-p = 0.9900 and further that

engine failures are independent events even in multi-engined airplanes. Then

from Eq B-16, for a single engined airplane, during a single mission (trial):

Pr(Success) =n'!ps qn-s , (1 pqO

= 0.9900

Similarly for a twin engined airplane which requires both engines to complete

its flight (two successes in two trials):

n)cce p5  n-s 2 0

= 0.9801

'(Tables of the Binomial Probability Distribution, -National Bureau of
Standards, Applied Mathematics Series 6, U.S. Government Printing Office,
WashingtoniD. C., 1950.
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On the other hand, if a twin engined airplane can complete its flight on only

oneengine (at least one success in two trials), using the addition law for

mtually exclusive events:

Pr(Success) = Pr(One Success) + Pr(Two Successes)

q2  ~ p~~ q0

1 0.0001 0.9999

This shows the powerful advantage of redundancy.

The Poisson Distribution

For the purpose of estimating the number, s,, of independent events, A,

which will occur when the average rate per unit time, length, area, or volume

at which they occur is known, we use the Poisson distribution, named after.

Simeon Denis Poisson, the French mathematician. The events are isolated events

in a continuum. Thus, for example, the Poisson distribution may characterize

the number of cars arriving at, an intersection in one minute, the number of

bacterim on a slide, or the number of flaws in a casting.

If 0 is the "dens, ty" of the event, A, (the average rate per unit time,

for example) then the probability that -.the event occurs in the interval between

T an& T'+ T is proportional to AT, and the constant of proportionality is ,P.

Tr[event occurs between T and T + AT] = A AT. Now from the multiplication law,

Eq. B-6,

Pr[no event between 0 and T + AT Po(T + AT)

= Pr[no event between 0 and T] Pr[no event between T and T +

or

Po(T + AT) = Po(T) [I - AT] '(B-33)
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On rearranging

P0 (T + ~T ~PO(T) -- 0 T~(- 1 .
bAT - OT-(-4

in the limit, or, 'as AT---O:

d Po(T)

dT + P(T) 0

The initial condition is Po(O) = 1.0 (the probability that no event occurs in

- ' zero time) and the solution is:

Po(T) = e' (B-36)

Similarly Pr [1 event between 0 and T + AT] = PI(T + A T). This probability

is the sum of the probability that there is one event in the interval, 0 to T,

and none in AT, together with the probability that there is no event in the

interval, 0 to T, and that there is one in AT.

PI(T + Mw) = P(T) [i - PAT] + P0(T)p AT ('13;37)

PI(T + AT)
---- _- 1 = -PI (T)p + Po(T)P (B-38)

Dividing by P, letting AT- 0- , rearranging and substituting for Pop

1 d P1 (T)
-AT + PI(T) = e T  (B-39)

which has the solution,

PI(T) = PT e"AT (B-40)

By success:ively considering the probability that 2, 3, . . . n events will occur
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in the interval T + T we would find that P(T) = -)2eOT, P (T) 3 eT

(AT 2' 2-ATp() ---

P(T)= e These may be recognized as successive terms in the

expansion

-M' Mm 2 +mn]

e -=e=1=em + 2+.+ (B-41)

where m ='IT. Notice that the sumof all the probabilities is one. For the

Poisson distribution then

-m s

Pr(x =s) e m (B-42)

and the density function is given by the expression:
CO a

'PI e -P m, (x -s) (B-43)

Again s takes only integer values. m is the "frequency parameter" of the Poisson

distribution which represents the number of events in a typicai finite

interval, i.e. m = OT, for example, where P: is the "'density" of the events,

and T is a convenient interval, say 1 sec or 1 year.

A quaint example of the application of the Poisson distribution is to the

prediction of the number of cavalrymen likely to be killed by horse kicks in

the course of a year. Assuing that each such event is independent and

occurs randomly in time, but with a constant overall frequency, suggests that

the Poisson distribution may bec appropriate. Data collected by von Bortkiewicz*

for 10 Army Corps for 20 years (200 readings) shows a total of 122 deaths from

horse kicks. There are, therefore, 12/200'= 0. I deaths per corps in a

typical year. This is the "frequency parameter", m, of the distribution.

Considering the pkobability of s = 0, 1, 2, 3, and 4 deaths occurring in any

one corps in any one year we can construct a table of probabilities of the

event, Pr(s= x) e0 6 1 (0.61) s/s'

*L. von Bortkiewicz, Das Gesetz der kleinen Zahlen, B. G. Teubner,

Leipzig, 1898.
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Number of deaths
in one year per corps, s 0 2 3

Piobability, Pr(x = s) 0.543 0.331 0.101 0.021 0.003

Frequency expected in
200 readings 109 66.3 20.2 4.1 0.6

Actual number of corps-years
the number s deaths occurred 109 65 22 3

It may be observed that the Poisson distribution gives a good fit to the

actual. data and might be used to extrapolate the experience.

We have had occasion to mention that the calculation of -the binomial

distribution is tedious when the number of trials, n, becomes large In some

cases, the Poisson distribution is a suitable approximation. Recall that the

binomial distribution is characterize by the expression

(n )s qn-s n'1 s(1 pn-s
Pr(x = s)= (s = p( -(n-s) ) (B-44)

In the Poisson distribution the parameter, m, is the average number of

occurrences (successes) in a typical finite interval of interest. Take the

interval to extend over the number of independent "trials" in the case of the

binomial distribution -and therefore- let m-=np ,the average number of successes

in n trials. Substituting p m/n and rewriting EqB-39:

Pr(x m s) n ( -

n!: / )n-s

nn * (n - I ms - s (B45)n n • • . n (n -s)l js' n B,5

there are s of these
factors
( I) s nmm si -n s
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This last expression, of course, is the one which defines the Poisson

distribution. The approximation is useful when n is as small as 20 provided

M - na <5. For larger values of m,= np the approximtion will only be useful

for -still larger values o6' n.

Consider now home continuous one-dimensional distributions.
/

Ite Uniform Distribution

A uniform distribution is appropriate to the description of a continuum

of events which are equally likely in a given interval, say from m - - to,
x 2

m + . y equally likely we mean that the probability element

p1(x)dx - PrxI < X < x1 + dxi] is a constant. The. first probability

density function itself is, therefore, a constant over the interval, and

zero elsewhere. Since we have to arrnge that

P[a<X<,p xd =1 (B-48)

Pl(x) = 1/X. Then the distribution function P.(x)', is a cut-off ramp function

rising fromO0 to one while (m. -1) < x < (m+ )

An example of the application of the uniform distribution would be to

the calculation of the probabilitydisregarding the actually discrete nature

of the problem, that a 'wheel .of fortune would stop on any particular number.
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Anotber important contimous distribution is the exonential Gistributiou.

It is often used in estimating the reliability of syste*. or comqpoents

vhich are subject to i constant hazard.

Consider a component which has survived to the time, . Letting. -

symbolize the event failure and S the event survival., the conditional

probability of failure in -a& time, t), given that 'the component has survived,

up to time, t, from Eq B-.5, is:

The conditional probability of failure is proportional to the hazard, c, and

the interval, At.

Pr(F/S) =c(At) '(B-5o)

Suppose that the cumulatiVe probability distribution for failure as a function
of time were known. Call it P!(t). Thenthe probability of the component's

surviving to the time, t, is

Pr(s) = i'rMi T f P1() WB51

andthedervatve dt Pli(t) times At is-the probability element which

defines the probability that the component will fail in the time, At. This

is the same thing as surviving up to time, t, and then failing.

dPi (At) (B-52)Pr(Ps) H-CA
dt,

Sibstituting in Eq B-35:

dP1c(t) ! (At[p (t)]

or

d + Pl(t) 1 u(t) t >
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, now Ov l lw tls eqptmt for m a dletributm functLon

ad- the correspoigdenity functi- i-.:

:; p, (T t ,eec  t > o 0

The exponential functions which appear here give the distribution its name.

/ In applications to reliability calculations, 'the inverse of the parameter,

e, vhich has the dimensions of time often goes by the name: mean time befcre,
failure or Mf1F. This is its physical significance in such applications.

Note from Table B-I that the mean of the exp6nential distribution is 1/ci

More generally the exponential distribution g6verns the time between

occurrences bf independent random events which, occur at a constant average

rate. In this respect the exponential distribution bears a close relationship

to the Poisson distribution. Recall from Zq B-31, used in deriving the

Poisson distribution, that for independent events occurring randomly in tim

at a constant average rate:

Pr[no event between- 0 and t] =Po(t) = e' t  (B-,56)

S ilarly:

Pr[no event between t and t + tt] - e" t (B-5}

and therefore: 1/

Pr[at l.east one event between t and t + _]Mt 1 - e" t (B-8

Since., for a very small At (approaching dt),

e p t  " 1 - t \

therefore,

I.. •-pdt = pdt (B-59)
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end hisis atePnhsbility, of egat neeot in, the inter"Il e~u

rLdt + Gdt.e 71351 the oduct ,of the pid -biliL se 3f-3o, gves n tIn
interval 'between 014ad t and eaclyon eoter. In, the, interva between t aid

t + dt yields. the- probaility.%element .(d )ptg which integrated from

o, to T, shows the probability; of, exactly one event occurring more thn

seconds after its predecessior and less than T,+ dt seconds afterward.

Pr [one event between T-an + dt] =! e-Otdt

Thus tkbe intervals-, 'Ti, between the events in a IPoisson process are seen to

be gov erned by the exponential distribution. The mean time between the
events Tav= , the inverse of the "density" of the events.

To return briefly to the question of engine reliability- Iused to illustrate,
the binomial distribution, one might have asked:' "How was it determined' that

the pro~bability-of the engine'S surviving a, four hour flight, p =, 0.99007?"
Under conditions approximating a constant hazard, it means that,.,on the

average: there are four-hundred engine operating hours-(during short missions)'

between random failures. Alternatively the mean time between failures

1 a 4100 hours.* The cumulative- probability -of failure -during, the- missioi- is,

governed -by the exponential distribution. From Eql B! .5-7 and B-40 the Proba-

uity that the engine will survive (not fail) up to a time,

t,.z mission time = 4 h-ours, is:

Pr(S) =Pr(M I - 1 elt = -ct (B-61)

1 -ct 1 0.9900

The Gaussian Distribution

By far the most in~ortant probability distribution in science and

engineering is the normal or so -called Gaussian distribution. (It was actually

discovered by Abraham De Moirve as an approximation to the binomial

distribution and vas published by him in 17.3,p 60 years before
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Carl Friedrich Gauss. used it in his astronomical calculations.) It can be

deritd very simply.*

The reader my recall that following some formulations of statistical
isecbanics, in the teory of communication, the entropy or information, H,

of- a diser;te iet of pr bdoities . ? • .,- p..--, is defined .in such- aW

that

n

N-r -Slgp

Furthermore, the entropy' is a measure of disorder or information (choice).
For a continuous (single dimensional), probabiltty distribution, the analogous

expression is:

.. pf p1(x) log p1 (x)dx (-63)

We may inquire as to the first probability density function which makes the

entry (disorder, randomness) a maxiium, subject to the condition that the

standard deviation of the variable x be a constant, c. The square of the

standard deviation or "variance" hai been deflned in terms of the density
function in Eq B-23, repeated here,

r . x2p (x)dx (B-44f)

and from Eq B-15:

go Pl(x)dx 0 (B-65)

Finding the maximum value of the integral function H, subject to the
constraints (Eq -48 and B-49) is a standard problem in the calculus of

variations. t

*C. E. Shannon and W. Weaver, The Mathematical Theory of Communication,
University of Illinois Press, Urbana, Illinois, 19T9, pp. .r5 6.

tL. E. Elsgolc, Calculus of Variations, Addison-Wesley Publishing Co.,Inc.

Reading, Massp 1962.
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It, Is done by a"Joining tho- constraints (eaqh- utitipled by a 18giange

inatiplier) to the payoff function and.aiumisittfthe tn. The problem then

Ubicms to ,find:,

~ f [p~x) logP(x) + x~p(x) + wvp(x)]-d (-6

A neecessary condition for the maximum is, that the Ruler equation, be satisfied.
The Euler equation is: r- d vher i'xyjy') is the-integrand.

In this case, where there are no derivatives off p(x)' in the Integrand, thre

P'.Aer equation is simply:

[(][-P(xi log p(x)- + ~XXp(x) + vp(-X)] 0

1,-log p(x) +Xx 2 +v=i 0

or

jp(x) 'ie V1e Xx

The constants v and X are then chosen so as to satisfy the equations of

4onstraint. -An-appropridte choice- yields-

P1(x W ..1.. e-(x/20,) (3-68)'

which is the fir'st probability density function for the Gaussian distribution

vith a zero mean value. Its integral is the first distribution function

Pj(x) 1 + erf(~ (B-69)

erf(~= JX/eu2 du (B-7)

is the s'o-called error function.*

*Is N. Sneddon, Special Functions Of Mathematical Physics and Cheiitry,
Oliver and Boyd, 'Edinuh and London, 1961, pi13p forexample.
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ere/ merall] the Gaussian distribution Is defined by

+ ~.eri(-i (B-;72)

vhich allows for the case in- which the mean value of x is not necessarily zero.

We have seen that, in a sen e, the Gaussian distribution is the one

associated with the maximum degree of randomness. Otherwise, subject to,

fatrly general conditions, it can 'be shown that the first probability dehnsity

function, p'(x),. of the sum-of a large number, N, of independent random,

variables tends to the p"robability density function of the normal (Gaussian)

distribution. For this reason, if we are observing a random variable whose

fluctuations are due to a large number of independent causes, and. this is

indeed often the case, the Gussian distribution is likely to be the

'appropriate one eharacterizing .the variable 'of interest.

For-essentially the same reason, the Gaussian distribution is also an

approximation to the discrete binomial and Poisson distributions if, the mean

np or-m is large.

To fit a Gaussian distribution to a discrete one derived from plotting

numbers of .cases in given categories; so as to keep the total probability

equal to one, the ordinates of the normal probability density curve are

multiplied by the total number of observations,. N.

S/N2s

where the standard deviation is

a = a (B-74)
N
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and there iis the mean of all the observations,, rcm In the cases of
the binomial and Poiso6n distributiontesa ardviiofcus,

£ is the square root of the known viriance. See Table B-1-.

Figure B-3 shows seVerril normal density functions with different means'

ind s 'tandard deviations, B ince the area under each curve tmust be; one, 'they

are higher at the manm value if the standard deviatcizi is small. The points

-< of inflection on each curve are located one standard'deviation from the man.

IV - b

Pi~ ~ _4 -10

0O M0 rb MC

Fig- B-3. Normal Density Functions

In order to make numerical calculations,. normal density function~is

/usually cast into the standard form in which the mean is zero and the standard
deviation is unity. Deviations from, the- -mean- are then -measured- in- units -of

9 tandard deviations, t X a [ standard deitos The standard form is:

z(t) 1 e -.- e

This function is found tabulated in- a number of places.*

Oriever usfulconfiguration of tabulated values is in terms of

Prj[(x - m)> t]=i f t Zt

*See, for examplei A.- Hald, Statistical Tables and Formulas, John- Wiley
and Sons, Inc., New York, 1952, p. 33 where it is designated q(u); or M.
M. Abramowitz and I. Stegun (eds.),p Handbook of Mathematical Functions,
National 13ureau of Standards Applied Mathematics Series 55, U.S. Govezi~ient
Printing Office, Washington, D. 0.) 1964, pp. Ir'i6-9720, where it is,'
designated Z(x).-
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Vhich represents the probability of a random variable, known to be governad

by the normal distributionj exceeding a given positive value, greater than

the mean, by an amount expressed as a number of standard deviations, t.

This probability is the hatched area under the curve in Fig. B-4. A very

short table of such probabilities is presented in Table B-4.

Area Pt P(x -ji) >t]

-I 0 I t

Fig. B-4. The Standard Form of the Normal,
Probability Density Function and Pr [(x-m1 ) > t]

TAABLE B-if

PROBABILITY OF A VARIABLE EXCEEDING A VALUE
t STANDAMD DEVIATIONS GREATER THAN THE MEAN

tt
Standard Pr[(x-m1 )>t] Standard Pr[(x-ml)>

Deviations Deviations

0.00 0.56000 2.00 0.02275

0.50 O.30854 3.00 0.00135

1..00 0.15866 4.00 0.00003

1.50 006680 5.00 3 x 10-7

Since the Gaussian curve is symmetrical, Table B-i may also be used to

calculate the probability that a variable will be less than the mean by an

amount which exceeds t standard deviations; or, indeed, -if the probability

of a value either greater or less than the mean by the specified nu1b6er of

standard deviations is ranted, it is twice the values in the table. Thus the

well remembered numbers
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1rx 4U~~ Pr[x Z al2trj~~ and .1 [

As a simple example of the application of the normal distribution,

consider that in typical aircraft carrier 'landing operations the uan

sink rate of the airplanes-at the instant of contact with the deck is

VI = 1tf.0 ft/sec, that the :'standard deviation in the sink rate is...i,33 ft/sec,

and that the sink rate is normally distributed about the mean value. tf a

.sink rate of 21.0 ft/sec corresponds to the ultimate strength of the landing

gear, in what fraction of all landings will the aircraft be, damaged by''a

hard landing!

Pr > 21] Pr[VI >14 + 3(2.33)]

From-Table B-4, this is the probability that the sink. rate will be more

than the sum of the mean Value and three, standard deviatiqns, " .e.,

P [Yj > 21 1= 0.00135, or the sink rate: will be excessive ,once 'in 7&0 landings.'

These few facts on the Gaussian and: other distributions allow us to make

a large number of interesting calculations concerning probabilities;but the

material presented in this Appendix is only introductory, and it is no'

tubstitute for a more rigorous study of the subject.

o3

/,
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